본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 53/122
521
  • KOKUBO EUCHIRO
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.153-155
  • 2005
  • 원문 바로보기
We have developed the four-dimensional digital universe theater at which we can visualize the observational data and theoretical models of astronomical objects stereoscopically. The astronomical objects cover all scales of the universe from the solar system to the large-scale structure of the universe. We have also produced the three-dimensional movies of various astronomical processes based on the results of computer simulations. We plan to distribute all the products of this project through the internet.
522
  • LEE JOUNGHUN
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.161-164
  • 2005
  • 원문 바로보기
We present a theoretical formalism by which the global and the local mass functions of dark matter substructures (dark subhalos) can be analytically estimated. The global subhalo mass function is defined to give the total number density of dark subhalos in the universe as a function of mass, while the local subhalo mass function counts only those sub halos included in one individual host halo. We develop our formalism by modifying the Press-Schechter theory to incorporate the followings: (i) the internal structure of dark halos; (ii) the correlations between the halos and the subhalos; (iii) the subhalo mass-loss effect driven by the tidal forces. We find that the resulting (cumulative) subhalo mass function is close to a power law with the slope of <TEX>${\~}$</TEX> -1, that the subhalos contribute approximately <TEX>$10\%$</TEX> of the total mass, and that the tidal stripping effect changes the subhalo mass function self-similarly, all consistent with recent numerical detections.
523
  • TANIGUCHI YOSHIAKI
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.187-190
  • 2005
  • 원문 바로보기
The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project. The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in I(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B, V, r', i', and z') using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.
524
  • MULLER SEBASTIEN
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.245-248
  • 2005
  • 원문 바로보기
We present mm observations with the IRAM 30m radiotelescope of the HCN (J=1-0) and HCO+ (J=1-0) emission lines from Giant Moleculat Clouds (GMC) in the disk of the Andromeda Galaxy, The selected GMC targets have various morphology and environments, including locations within spiral arms or in interarm regions and with galactocentric radii ranging from 2.4 to 15.5 kpc over the disk. The radial distributions of the ratios HCN/CO and HCO+ /CO are discussed and their values are compared to other galaxies.
525
  • KANG HYESUNG
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.225-232
  • 2004
  • 원문 바로보기
Shocks are ubiquitous in astrophysical environments and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration. It is believed that the CR pressure is important in the evolution of the interstellar medium of our galaxy and most of galactic CRs with energies up to <TEX>${\~}\;10^{15}$</TEX> eV are accelerated by supernova remnant shocks. In this contribution we have studied the CR acceleration at shocks through numerical simulation of 1D, quasi-parallel shocks for a wide range of shock Mach numbers and shock speeds. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies, and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that <TEX>$10^{-4} - 10^{-3}$</TEX> of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number, and high Mach number shocks all evolve towards efficiencies <TEX>${\~}50\%$</TEX>, regardless of the injection rate and upstream CR pressure. We conclude that the injection rates in strong quasi-parallel shocks are sufficient to lead to significant nonlinear modifications to the shock structures, implying the importance of the CR acceleration at astrophysical shocks.
526
  • BIERMANN PETER L.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.527-531
  • 2004
  • 원문 바로보기
It is argued that the key task in understanding magnetic fields in the cosmos is to comprehend the origin of their order or coherence over large length scales in galaxies. Obtaining magnetic fields can be done in stars, whose lifetime is usually <TEX>$10^{10}$</TEX> rotations, while galactic disks have approximately 20 to 50 rotations in their lifetime since the last major merger, which established the present day gaseous disk. Disorder in the galactic magnetic fields is injected on the disk time scale of about 30 million years, about a tenth of the rotation period, so after one half rotation already it should become completely disordered. Therefore whatever mechanism Nature is using, it must compete with such a short time scale, to keep order in its house. This is the focal quest.
527
  • KOCH PATRICK
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.471-476
  • 2004
  • 원문 바로보기
We propose an analytical model to estimate the influence of a merger on the thermal SZ effect. Following observations we distinguish between subsonic and transonic mergers. Using analytical velocity fields and the Bernoulli equation we calculate the excess pressure around a moving subcluster for an incompressible subsonic gas. Positive excess around the stagnation point and negative excess on the side of the subcluster lead to characteristic signatures in the SZ map, of the order of <TEX>$10\%$</TEX> compared to the unperturbed signal. For a transonic merger we calculate the change in the thermal spectral SZ function, resulting from bow shock accelerated electrons. The merger shock compression factor determines the power law tail of the new non-thermal electron population and is directly related to a shift in the crossover frequency. This shift is typically a few percent towards higher frequencies.
528
  • HENRIKSEN MARK
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.299-305
  • 2004
  • 원문 바로보기
We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.
529
  • KIM YEON-HAN
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.171-177
  • 2004
  • 원문 바로보기
X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.
530
  • ALAWY A. EL-BASSUNY
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.3
  • pp.119-129
  • 2004
  • 원문 바로보기
A new method has been developed to solve the star cluster membership problem. It is based on synthetic photometry employing the Black Body concept as stellar radiation simulator. Synthetic color-magnitude diagram is constructed showing the main sequence band and the positions of binary star systems of combinations of various components through different photometric tracks. The method has been applied to the Hyades. The cluster membership problem has been re-appraised for the cluster (both single and binary) stars. For the binary members, the components' spectral types have been derived by the method. The results obtained agree very well with those found in literature, The method is simpler than the others and can be developed to undertake other cases as multiple star systems.