본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 53/122
521
  • TANIGUCHI YOSHIAKI
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.187-190
  • 2005
  • 원문 바로보기
The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project. The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in I(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B, V, r', i', and z') using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.
522
  • LEE JOUNGHUN
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.161-164
  • 2005
  • 원문 바로보기
We present a theoretical formalism by which the global and the local mass functions of dark matter substructures (dark subhalos) can be analytically estimated. The global subhalo mass function is defined to give the total number density of dark subhalos in the universe as a function of mass, while the local subhalo mass function counts only those sub halos included in one individual host halo. We develop our formalism by modifying the Press-Schechter theory to incorporate the followings: (i) the internal structure of dark halos; (ii) the correlations between the halos and the subhalos; (iii) the subhalo mass-loss effect driven by the tidal forces. We find that the resulting (cumulative) subhalo mass function is close to a power law with the slope of <TEX>${\~}$</TEX> -1, that the subhalos contribute approximately <TEX>$10\%$</TEX> of the total mass, and that the tidal stripping effect changes the subhalo mass function self-similarly, all consistent with recent numerical detections.
523
  • ELKHATEEB M. M.
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.1
  • pp.13-16
  • 2005
  • 원문 바로보기
We present a period analysis of the well known <TEX>$\beta$</TEX> Lyrae type eclipsing binary GO Cyg <TEX>$(P= 0^d .7177)$</TEX>. Several new times of minimum light, recorded photoelectrically, have been gathered. Analysis of all available eclipse timings of GO Cyg has confirmed a significant period increase with rate of <TEX>$2.52 {\times} 10^{-10}$</TEX> day / cycle, also new period has been estimated. New linear and quadratic ephemerides have been calculated for the system.
524
  • MURATA YASUHIRO
  • Journal of the Korean astronomical society = 천문학회지
  • 38, n.2
  • pp.97-100
  • 2005
  • 원문 바로보기
The first Space-VLBI project, VSOP, started successfully with the launch of the dedicated space-VLBI satellite HALCA in 1997. The project has been in scientific operation in the 1.6 GHz and 5 GHz bands, and studies have been done mainly of the jet phenomena related to active galactic nuclei. A second generation space- VLBI project, VSOP-2, has been planned by the working group formed at ISAS/JAXA with many collaborators. The spacecraft is planned to observe in the 8, 22 and 43 GHz bands with cooled receivers for the two higher bands, and with a maximum angular resolution at 43 GHz (7 mm) of about 40 micro-arcseconds. The VSOP-2 satellite will also have the capability of the phase-reference and full polarization observations, which will produce more powerful results than those of the VSOP project. Far-future space-VLBI projects following VSOP and VSOP-2, have a large potential to achieve enough resolution and sensitivity to satisfy astronomers in future.
525
  • KANG HYESUNG
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.225-232
  • 2004
  • 원문 바로보기
Shocks are ubiquitous in astrophysical environments and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration. It is believed that the CR pressure is important in the evolution of the interstellar medium of our galaxy and most of galactic CRs with energies up to <TEX>${\~}\;10^{15}$</TEX> eV are accelerated by supernova remnant shocks. In this contribution we have studied the CR acceleration at shocks through numerical simulation of 1D, quasi-parallel shocks for a wide range of shock Mach numbers and shock speeds. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies, and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that <TEX>$10^{-4} - 10^{-3}$</TEX> of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number, and high Mach number shocks all evolve towards efficiencies <TEX>${\~}50\%$</TEX>, regardless of the injection rate and upstream CR pressure. We conclude that the injection rates in strong quasi-parallel shocks are sufficient to lead to significant nonlinear modifications to the shock structures, implying the importance of the CR acceleration at astrophysical shocks.
526
  • LAZARIAN A.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.563-570
  • 2004
  • 원문 바로보기
Turbulence is a crucial component of dynamics of astrophysical fluids dynamics, including those of ISM, clusters of galaxies and circumstellar regions. Doppler shifted spectral lines provide a unique source of information on turbulent velocities. We discuss Velocity-Channel Analysis (VCA) and its offspring Velocity Coordinate Spectrum (VCS) that are based on the analytical description of the spectral line statistics. Those techniques are well suited for studies of supersonic turbulence. We stress that a great advantage of VCS is that it does not necessary require good spatial resolution. Addressing the studies of mildly supersonic and subsonic turbulence we discuss the criterion that allows to determine whether Velocity Centroids are dominated by density or velocity. We briefly discuss ways of going beyond power spectra by using of higher order correlations as well as genus analysis. We outline the relation between Spectral Correlation Functions and the statistics available through VCA and VCS.
527
  • SEO YOUNG-MIN
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.185-191
  • 2004
  • 원문 바로보기
We have been developing a solar observing system based on a fast CCD camera 1M30P made by the DALSA company. Here we examine and present the characteristics and performance of the camera. For this we have analyzed a number of images of a flat wall illuminated by a constant light source. As a result we found that in the default operating mode 1) the mean bias level is 49 ADU/pix, 2) the mean dark current is about 8 ADU /s/pix, 3) the readout noise is 1.3 ADU, and 4) the gain is about 42 electrons/ ADU. The CCD detector is found to have a linearity with a deviation smaller than <TEX>$6\%$</TEX>, and a uniform sensitivity better than <TEX>$1\%$</TEX>. These parameters will be used as basic inputs in the analysis of data to be taken by the camera.
528
  • KOCH PATRICK
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.471-476
  • 2004
  • 원문 바로보기
We propose an analytical model to estimate the influence of a merger on the thermal SZ effect. Following observations we distinguish between subsonic and transonic mergers. Using analytical velocity fields and the Bernoulli equation we calculate the excess pressure around a moving subcluster for an incompressible subsonic gas. Positive excess around the stagnation point and negative excess on the side of the subcluster lead to characteristic signatures in the SZ map, of the order of <TEX>$10\%$</TEX> compared to the unperturbed signal. For a transonic merger we calculate the change in the thermal spectral SZ function, resulting from bow shock accelerated electrons. The merger shock compression factor determines the power law tail of the new non-thermal electron population and is directly related to a shift in the crossover frequency. This shift is typically a few percent towards higher frequencies.
529
  • HENRIKSEN MARK
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.299-305
  • 2004
  • 원문 바로보기
We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.
530
  • TREGILLIS I. L.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.509-515
  • 2004
  • 원문 바로보기
We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.