본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2023년까지 1,187 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,187건 (DB Construction : 1,187 Articles)
안내사항
총 게시글 1,187 페이지 56/119
551
  • RYU DONGSU
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.477-482
  • 2004
  • 원문 바로보기
Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.
552
  • KRONBERG PHILIPP P.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.343-347
  • 2004
  • 원문 바로보기
The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > <TEX>${\~}0.l{\mu}G$</TEX> or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, <TEX>${\~}$</TEX>10 Gyr ago, as now.
553
  • MAZZOTTA PASQUALE
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.381-385
  • 2004
  • 원문 바로보기
Similarly to other cluster of galaxies previously classified as cooling flow systems, the Chandra observation of MKW 3s reveals that this object has a complex X-ray structure hosting both a X-ray cavity and a X-ray filament. Unlike the other clusters, however, the temperature map of the core of MKW 3s shows the presence of extended regions of gas heated above the radially averaged gas temperature at any radius. As the cluster does not show evidences for ongoing major mergers Mazzotta et al. suggest a connection between the heated gas and the activity of the central AGN. Nevertheless, due to the lack of high quality radio maps, this interpretation was controversial. In this paper we present the results of two new radio observations of MKW 3s at 1.28 GHz and 604 MHz obtained at the GMRT. Together with the Chandra observation and a separate VLA observation at 327 MHz from Young, we show unequivocal evidences for a close connection between the heated gas region and the AGN activity and we briefly summarize possible implications.
554
  • LEE CHANG WON
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.257-259
  • 2004
  • 원문 바로보기
We compare the results of the surveys of starless cores performed with CS (2-1) and (3-2) lines to study inward motions in the cores. The velocity shifts of the CS(3-2) and (2-1) lines with respect to <TEX>$N_2H^+$</TEX> are found to correlate well with each other and to have similar number distributions, implying that, in many cores, systematic inward motions of gaseous material may occur over a range of density of at least a factor <TEX>${\~}$</TEX>4. Fits of the CS spectra to a 2-layer radiative transfer model in ten infall candidates suggest that the median effective line-of-sight speed of the inward-moving gas is <TEX>${\~}0.07 km\;s^{-l}$</TEX> for CS (3-2) and <TEX>${\~} 0.04 km\;s^{-l}$</TEX> for CS(2-1). Considering that the optical depth obtained from the fits is usually smaller in CS(3-2) than in (2-1) line, this may indicate that CS(3-2) usually traces inner, denser gas with greater inward motions than CS(2-1) implying that many of the infall candidates have faster infall toward the center. However, this conclusion may not be representative of all starless core infall candidates, due to the statistically small number analyzed here. Further line observations will be useful to test this conclusion.
555
  • SANTILLAN ALFREDO
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.233-235
  • 2004
  • 원문 바로보기
High-velocity clouds are flows of neutral hydrogen, located at high galactic latitudes, with large velocities (<TEX>$[VLSR]{\ge} 100 km/s$</TEX>) that do not match a simple model of circular rotation for our Galaxy. Numerical simulations have been performed for the last 20 years to study the details of their evolution, and their possible interaction with the Galactic disk. Here we present a brief review of the models that have been already published, and describe newly performed three-dimensional magnetohydrodynamic simulations.
556
  • HATTORI MAKOTO
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.543-546
  • 2004
  • 원문 바로보기
The inverse Compton scattering of the cosmic microwave background (CMB) radiation with electrons in the intracluster medium which has a temperature gradient, was examined by the third-order perturbation theory of the Compton scattering. A new type of the spectrum distortion of the CMB was found and named as gradient T Sunyaev-Zel'dovich effect (gradT SZE). The spectrum has an universal shape. There is a zero distortion point, the cross over frequency, at 326GHz. When the hotter region locates closer to an observer, the intensity becomes brighter than the CMB in the frequency region lower than the cross over frequency and fainter than the CMB in the frequency region higher than the cross over frequency. When the cooler region locates closer to an observer, the distorted part of the spectrum has an opposite sign to the above case. The amplitude of the spectrum distortion does not de-pend on the electron density and depends on the heat conductivity and the total temperature variation along a line of sight. Therefore, the gradT SZE provides an unique opportunity to measure thermally nonequilibrium electron momentum distribution function in the ICM and combined with the X-ray measurements of the electron temperature distribution provides an opportunity of direct measurement of the heat conductivity in the ICM.
557
  • LANGER MATHIEU
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.553-556
  • 2004
  • 원문 바로보기
We present a new model for the generation of magnetic fields on large scales occurring at the end of cosmological reionisation. The inhomogeneous radiation provided by luminous sources and the fluctuations in the matter density field are the major ingredients of the model. More specifically, differential radiation pressure acting on ions and electrons gives rise to electric currents which induce magnetic fields on large scales. We show that on protogalactic scales, this process is highly efficient, leading to magnetic field amplitudes of the order of <TEX>$10^{-1l}$</TEX> Gauss. While remaining of negligible dynamical impact, those amplitudes are million times higher than those obtained in usual astrophysical magnetogenesis models. Finally, we derive the relation between the power spectrum of the generated field and the one of the matter density fluctuations. We show in particular that magnetic fields are preferably created on large (galactic or cluster) scales. Small scale magnetic fields are strongly disfavoured, which further makes the process we propose an ideal candidate to explain the origin of magnetic fields in large scale structures.
558
  • KRISHNA GOPAL
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.517-525
  • 2004
  • 원문 바로보기
We present an update on our proposal that during the 'quasar era' (1.5 <TEX>$\le$</TEX> z <TEX>$\le$</TEX> 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.
559
  • CASSANO R.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.583-587
  • 2004
  • 원문 바로보기
With the aim to investigate the statistical properties and the connection between thermal and non-thermal properties of the ICM in galaxy clusters, we have developed a statistical magneto-turbulent model which describes, at the same time, the evolution of the thermal and non-thermal emission from galaxy clusters. In particular, starting from the cosmological evolution of clusters, we follow cluster. mergers, calculate the spectrum of the magnetosonic waves generated in the ICM during these mergers, the evolution of relativistic electrons and the resulting synchrotron and Inverse Compton spectra. We show that the broad band (radio and hard x-ray) non-thermal spectral properties of galaxy clusters can be well accounted for by our model for viable values of the parameters (here we adopt a EdS cosmology).
560
  • BOWYER STUART
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.295-297
  • 2004
  • 원문 바로보기
Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (<TEX>${\~}$</TEX>Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.