본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2024년까지 1,246 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,246건 (DB Construction : 1,246 Articles)
안내사항
총 게시글 1,246 페이지 2/125
11
  • Trond S. Trondsen
  • Journal of astronomy and space sciences
  • 41, n.2
  • pp.121-138
  • 2024
  • 원문 바로보기
Advances in solar-terrestrial physics are generally linked to the development of innovative new sensor technologies, affording us ever better sensitivity, higher resolution, and broader spectral response. Recent advances in low-noise InGaAs sensor technology have enabled the realization of low-light-level scientific imaging within the short-wave infrared (SWIR) region of the electromagnetic spectrum. This paper describes a new and highly sensitive ultra-wide angle imager that offers an expansion of auroral and airglow imaging capabilities into the SWIR spectral range of 900-1,700 nm. The imager has already proven successful in large-area remote sensing of mesospheric temperatures and in providing intensity maps showing the propagation and dissipation of atmospheric gravity waves and ripples. The addition of an automated filter wheel expands the range of applications of an already versatile SWIR detector. Several potential applications are proposed herein, with an emphasis on auroral science. The combined data from this type of instrument and other existing instrumentation holds a strong potential to further enhance our understanding of the geospace environment.
12
  • Fawzy Ahmed Abd El-Salam
  • Journal of astronomy and space sciences
  • 41, n.2
  • pp.87-106
  • 2024
  • 원문 바로보기
The objective of this research is to address the issue of frozen orbits in charged satellites by incorporating geopotential zonal harmonics up to J6 and the initial tesseral harmonics. The employed model starts from the first normalized Hamiltonian to calculate specific sets of long-term frozen orbits for charged satellites. To explore the frozen orbits acquired, a MATHEMATICA CODE is developed. The investigation encompasses extensive variations in orbit altitudes by employing the orbital inclination and argument of periapsis as freezing parameters. The determined ranges ensuring frozen orbits are derived from the generated figures. Three-dimensional presentations illustrating the freezing inclination in relation to eccentricity, argument of periapsis, and semi-major axis parameters are presented. Additional three-dimensional representations of the phase space for the eccentricity vector and its projection onto the nonsingular plane are examined. In all investigated scenarios, the impacts of electromagnetic (EM) field perturbations on the freezing parameters of a charged satellite are demonstrated.
13
  • Ussipov, Nurzhan
  • Journal of astronomy and space sciences
  • 41, n.3
  • pp.149-158
  • 2024
  • 원문 바로보기
<P> This study developed a machine learning-based methodology to classify gravitational wave (GW) signals from black hole-neutron star (BH-NS) mergers by combining convolutional neural network (CNN) with conditional information for feature extraction. The model was trained and validated on a dataset of simulated GW signals injected to Gaussian noise to mimic real world signals. We considered all three types of merger: binary black hole (BBH), binary neutron star (BNS) and neutron star-black hole (NSBH). We achieved up to 96% correct classification of GW signals sources. Incorporating our novel conditional information approach improved classification accuracy by 10% compared to standard time series training. Additionally, to show the effectiveness of our method, we tested the model with real GW data from the Gravitational Wave Transient Catalog (GWTC-3) and successfully classified ~90% of signals. These results are an important step towards low-latency real-time GW detection. </P>
14
  • Baranova, Vasilina
  • Journal of astronomy and space sciences
  • 41, n.3
  • pp.159-170
  • 2024
  • 원문 바로보기
<P> A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids. </P>
15
  • GyeongRok Kwon
  • Journal of astronomy and space sciences
  • 41, n.2
  • pp.79-85
  • 2024
  • 원문 바로보기
Nowadays, the trend in lunar exploration missions is shifting from prospecting lunar surface to utilizing in-situ resources and establishing sustainable bridgehead. In the past, experiments were mainly focused on rover maneuvers and equipment operations. But the current shift in trend requires more complex experiments that includes preparations for resource extraction, space construction and even space agriculture. To achieve that, the experiment requires a sophisticated simulation of the lunar environment, but we are not yet prepared for this. Particularly, in the case of lunar regolith simulants, precise physical and chemical composition with a rapid development speed rate that allows different terrains to be simulated is required. However, existing lunar regolith simulants, designed for 20th-century exploration paradigms, are not sufficient to meet the requirements of modern space exploration. In order to prepare for the latest trends in space exploration, it is necessary to innovate the methodology for producing simulants. In this study, the basic framework for lunar regolith simulant development was established to realize this goal. The framework not only has a sample database and a database of potential simulation target compositions, but also has a built-in function to automatically calculate the optimal material mixing ratio through the particle swarm optimization algorithm to reproduce the target simulation, enabling fast and accurate simulant development. Using this framework, we anticipate a more agile response to the evolving needs toward simulants for space exploration.
16
  • Ki-Won Lee
  • Journal of astronomy and space sciences
  • 41, n.2
  • pp.107-119
  • 2024
  • 원문 바로보기
It is known that Chang-Hwa Park (1889-1962) transcribed a chronicle of the Goguryeo kingdom (BC 37-AD 668) of Korea (hereafter Goguri annal) from literature of the time that is no longer available. However, the authenticity of his transcription remains disputed. This study attempts to verify whether the Goguri annal is a pseudograph by analyzing the astronomical records in the annal. Although the Goguryeo kingdom fell in the year 668, the Goguri annal contains records up to the year 536. In this study, we have classified the astronomical records into eight categories and clustered them into two groups: a calendrical data group of reign-name and calendar date categories, and a celestial phenomena group of solar eclipse, trespass, comet, daylight appearance of Venus, meteor/meteorite, and other categories. The records of each category have been compared with those of the Samguksagi (History of the Three Kingdoms), Chinese chronicles, and with the results of modern computations wherever possible. From this comparison, we have not found any critical record that would indicate that the Goguri annal is a pseudograph, although the same astronomical records, with the exception of a few, are also found in the Samguksagi and Chinese chronicles.
17
  • Kang, Hyeonji
  • Journal of astronomy and space sciences
  • 41, n.3
  • pp.139-148
  • 2024
  • 원문 바로보기
<P> A search coil magnetometer (SCM) is a common equipment to observe energy transmission and vibrations in space physics, enabling measurements across a wide frequency range of up to tens of kilohertz. This study proposes the designs of a magnetic core that allows a low-mass sensor and improves its performance: a rod core, sheet-stacked core, and rolling-sheet core. Subsequently, the performance of each sensor was investigated. The sheet-stacked core using the cobalt-based alloy exhibited the highest sensitivity, although it exhibited instability beyond 20 kHz. In contrast, the rod and rolling-sheet core sensors demonstrated stability in the magnetic field measurements (10 Hz-40 kHz). Moreover, the noise equivalent magnetic induction (NEMI) of the rod- and rolling-sheet core sensors were 0.014 pT Hz-1/2 and 0.012 pT Hz-1/2 at 1 kHz, respectively. The rolling-sheet core with high relative permeability achieved a mass reduction of over three times that of the rod core while exhibiting sufficient sensitivity. </P>
18
  • Orji Prince Orji
  • Journal of astronomy and space sciences
  • 41, n.1
  • pp.25-33
  • 2024
  • 원문 바로보기
This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.
19
  • Vasilina Baranova
  • Journal of astronomy and space sciences
  • 41, n.3
  • pp.159-170
  • 2024
  • 원문 바로보기
A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids.
20
  • Young-Sil Kwak
  • Journal of astronomy and space sciences
  • 41, n.3
  • pp.171-194
  • 2024
  • 원문 바로보기
This study reports comprehensive observations for the G5-level geomagnetic storm that occurred from May 10 to 12, 2024, the most intense event since the 2003 Halloween storm. The storm was triggered by a series of coronal mass ejections (CMEs) originating from the merging of two active regions 13664/13668, which formed a large and complex photospheric magnetic configuration and produced X-class flares in early May 2024. Among the events, the most significant CME, driven by an X2.2 flare on May 9, caught up with and merged with a preceding slower CME associated with an X-class flare on May 8. These combined CMEs reached 1 AU simultaneously, resulting in an extreme geomagnetic storm. Geostationary satellite observations revealed changes in Earth's magnetosphere due to solar wind impacts, increased fluxes of high-energy particles, and periodic magnetic field fluctuations accompanied by particle injections. Extreme geomagnetic storms resulting from the interaction of the solar wind with the Earth's magnetosphere caused significant energy influx into Earth's upper atmosphere over the polar regions, leading to thermospheric heating and changes in the global atmospheric composition and ionosphere. As part of this global disturbance, significant disruptions were also observed in the East Asian sector, including the Korean Peninsula. Ground-based observations show strong negative storm effects in the ionosphere, which are associated with thermospheric heating and resulting in decreases in the oxygen-to-nitrogen ratio (O/N<sub>2</sub>) in high-latitude regions. Global responses of storm-time prompt penetration electric fields were also observed from magnetometers over the East-Asian longitudinal sector. We also briefly report storm-time responses of aurora and cosmic rays using all-sky cameras and neutron monitors operated by the Korea Astronomy and Space Science Institute (KASI). The extensive observations of the G5-level storm offer crucial insights into Sun-Earth interactions during extreme space weather events and may help establish better preparation for future space weather challenges.