본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2024년까지 1,246 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,246건 (DB Construction : 1,246 Articles)
안내사항
총 게시글 1,246 페이지 5/125
42
  • Hongsu Kim
  • Journal of astronomy and space sciences
  • 40, n.4
  • pp.247-258
  • 2023
  • 원문 바로보기
Studying the accretion phenomena provides a window into understanding most heavenly bodies, from the birth of stars to active galactic nuclei (AGN). We would adopt the effect of the radiation pressure, which reduces accretion rates (Ṁ), on the accretion phenomena. The Shakura-Sunyaev α-disk model of disk accretion is a good candidate theory of advection dominated accretion flow (ADAF). Reduction in the angular velocity leads to the suppression the disk luminosity and surface temperature, essentially indicating the transition of the standard accretion disk model from convection dominated accretion flow (CDAF) to ADAF.
43
  • Mohammad Sh. Odeh
  • Journal of astronomy and space sciences
  • 40, n.1
  • pp.19-27
  • 2023
  • 원문 바로보기
We present the results of using small telescopes in the United Arab Emirates (UAE) for observing variable stars and asteroids. Two telescopes, namely, 5' apochromatic refractor and 14' Schmidt-Cassegrain, at Al-Khatim Observatory (M44) were used for the observations. The targets were the three variable stars RR GEM, AG LMi, and DL CMi and the asteroid 22 Kalliope. We found a good consistency between our light curves and published ones for the calibration targets, i.e., the asteroid 22 Kalliope and the variable star RR GEM. According to previous studies, AG LMi has two suggested periods, 16.3 hours and 32.62 hours. Our results clearly confirm the second one, with a period of 32.6175 hours. The star DL CMi has several suggested periods as per previous studies, such as 4.0173 days, 1.9606 days, and 2.0086 days. Our observations confirm the first one, with a period of 4.0159 days. These results demonstrate the effectiveness of using small telescopes for observing variable stars and asteroids. This work provides some recommendations on using small telescopes for such observations.
44
Korea Polar Research Institute (KOPRI) and Korea Astronomy and Space Institute (KASI) have been participating in the European Incoherent Scatter (EISCAT) Scientific Association as an affiliate institution in order to observe the polar ionosphere since 2015. During the period of December 16-21, 2016 and January 3-9, 2018, the observations for the polar ionospheric parameters such as the electron density profiles, ion drift, and electron/ion temperature are carried out in the polar cap/cusp region by the EISCAT Svalbard radar (ESR). The purpose of the observations is to investigate the characteristic of the winter ionosphere in the dayside polar cap/cusp region. In this paper, we briefly report the results of the ESR observations for winter daytime ionosphere and also the simultaneous observations for the ionosphere-thermosphere system together with the balloon-borne instrument High-Altitude Interferometer WIND Experiment (HIWIND) performed by the High Altitude Observatory (HAO), National Center for Atmospheric Research (NCAR). We further introduce our research activities using long-term EISCAT observations for the occurrence of ion upflow and the climatology of the polar ionospheric density profiles in comparison with the mid-latitude ionosphere. Finally, our future research plans will briefly be introduced.
45
  • Iyida, Evaristus U.
  • Journal of astronomy and space sciences
  • 39, n.2
  • pp.43-50
  • 2022
  • 원문 바로보기
The unified scheme of Seyfert galaxies hypothesizes that the observed differences between the two categories of Seyfert galaxies, type 1 (Sy1) and type 2 (Sy2) are merely due to the difference in the orientation of the toroidal shape of the obscuring material in the active galactic nuclei. We used in this paper, a sample consisting of 120 Seyfert galaxies at 1.40 &#x00D7; 10<sup>9</sup> Hz in radio, 2.52 &#x00D7; 10<sup>17</sup> Hz in X-ray and 2.52 &#x00D7; 10<sup>23</sup> Hz in &#x03B3;-ray luminosities observed by the Fermi Large Area Telescope (Fermi-LAT) in order to test the unified scheme of radio-quiet Seyfert galaxies. Our main results are as follows: (i) We found that the distributions of multiwave luminosities (L<sub>radio</sub>, L<sub>X-ray</sub>, and L<sub>&#x03B3;-ray</sub>) of Sy1 and Sy2 are completely overlapped with up to a factor of 4. The principal component analysis result reveals that Sy1 and Sy2 also occupy the same parameter spaces, which agrees with the notion that Sy1 and Sy2 are the same class objects. A Kolmogorov-Smirnov test performed on the sub-samples indicates that the null hypothesis (both are from the same population) cannot be rejected with chance probability p ~ 0 and separation distance K = 0.013. This result supports the fact that there is no statistical difference between the properties of Sy1 and Sy2 (ii) We found that the coefficient of the best-fit linear regression equation between the common properties of Sy1 and Sy2 is significant (r > 0.50) which plausibly implies that Sy1 and Sy2 are the same type of objects observed at different viewing angle.
46
  • Kil, Hyosub
  • Journal of astronomy and space sciences
  • 39, n.2
  • pp.23-33
  • 2022
  • 원문 바로보기
Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms.
47
  • Park, Nuri
  • Journal of astronomy and space sciences
  • 39, n.4
  • pp.141-144
  • 2022
  • 원문 바로보기
By providing an environment where energetic particles and micrometeorites can not penetrate, caves on Mars may serve as a human shelter in future Mars explorations. More than 1,000 cave entrance candidates have been detected; however, their physical characteristics that can be utilized in detecting more candidates have not been explored in detail. In this paper, we explore the nighttime temperature of 100 cave entrance candidates and their surrounding areas to investigate 1) the nighttime temperature tendencies relative to their surrounding areas and 2) the extent of these temperature differences. We find that 79% of the cave entrance candidates exhibit higher temperatures than the surrounding areas, and 59% show a temperature difference over 20K, suggesting that the cave entrances may generally show higher temperatures than the surrounding areas during the nighttime.
48
  • Ryu, Kwangsun
  • Journal of astronomy and space sciences
  • 39, n.3
  • pp.117-126
  • 2022
  • 원문 바로보기
The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (f<sub>UHR</sub>) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.
49
  • Ahn, Hee-Bok
  • Journal of astronomy and space sciences
  • 39, n.2
  • pp.51-57
  • 2022
  • 원문 바로보기
Cosmic radiation exposure of the flight crews in Korea has been managed by Radiation Safety Management around Living Life Act under Nuclear Safety and Security Commission. However, the domestic flight crews are excluded from the Act because of relatively low route dose exposure compared to that of international flight crews. But we found that the accumulated total annual dose of domestic flight crews is far from negligible because of relatively long total flight time and too many flights. In this study, to suggest the necessity of management of domestic flight crews' radiation exposure, we statistically analyzed domestic flight crew's accumulative annual dose by using cosmic radiation estimation models of the Civil Aviation Research Institute (CARI)-6M, Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS), and Korean Radiation Exposure Assessment Model (KREAM) and compared with in-situ measurements of Liulin-6K LET spectrometer. As a result, the average exposure dose of domestic flight crews was found to be 0.5-0.8 mSv. We also expect that our result might provide the basis to include the domestic flight crews as radiation workers, not just international flight attendants.
50
  • Shukla, Kumari Neeta
  • Journal of astronomy and space sciences
  • 39, n.2
  • pp.67-77
  • 2022
  • 원문 바로보기
The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn's internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn's ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.