본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,252 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,252건 (DB Construction : 1,252 Articles)
안내사항
총 게시글 1,252 페이지 4/126
32
  • Dong-Guk Kim
  • Journal of astronomy and space sciences
  • 40, n.4
  • pp.225-235
  • 2023
  • 원문 바로보기
This paper presents the structural design of a planar synthetic aperture radar (SAR) antenna applied to a microsatellite. For micro-satellite applications, the SAR antenna structure must be lightweight, flat, and designed to withstand the launch environment. To satisfy these conditions, our novel antenna structure was designed using aluminium (AL) alloy. Structural analysis was performed for quasi-static load, random vibration, and shock load to verify its robustness in the launch environment, and the results are presented here.
33
  • Kihong Park
  • Journal of astronomy and space sciences
  • 40, n.4
  • pp.259-266
  • 2023
  • 원문 바로보기
The Standard Model (SM) does not provide an information for 26% of dark matter of the universe. In the dark sector, dark matter is supposed to be linked with the hypothetical particles called dark photons that have similar role to photons in electromagnetic interaction in the SM. Besides astronomical observation, there are studies to find dark matter candidates using accelerators. In this paper, we searched for dark photons using future electron-positron colliders, including Circular Electron Positron Collider (CEPC)/CEPC, Future Circular Collider (FCC-ee)/Innovative Detector for Electron-positron Accelerator (IDEA), and International Linear Collider (ILC)/International Large Detector (ILD). Using the parameterized response of the detector simulation of Delphes, we studied the sensitivity of a double dark photon mode at each accelerator/detector. The signal mode is double dark photon decay channel, e<sup>+</sup>e<sup>-</sup> &#x2192; A'A', where A' (dark photon with spin 1) decaying into a muon pair. We used MadGraph5 to generate Monte Carlo (MC) events by means of a Simplified Model. We found the dark photon mass at which the cross-sections were the highest for each accelerator to obtain the maximum number of events. In this paper we show the expected number of dark photon signal events and the detector efficiency of each accelerator. The results of this study can facilitate in the dark photon search by future electron-positron accelerators.
34
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 40, n.3
  • pp.123-129
  • 2023
  • 원문 바로보기
<P> This paper presents an analysis of the trans-lunar trajectory insertion performance of the Korea Pathfinder Lunar Orbiter (KPLO), the first lunar exploration spacecraft of the Republic of Korea. The successful launch conducted on August 4, 2022 (UTC), utilized the SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. The trans-lunar trajectory insertion performance plays a crucial role in ensuring the overall mission success by directly influencing the spacecraft&rsquo;s onboard fuel consumption. Following separation from the launch vehicle (LV), a comprehensive analysis of the trajectory insertion performance was performed by the KPLO flight dynamics (FD) team. Both orbit parameter message (OPM) and orbit determination (OD) solutions were employed using deep space network (DSN) tracking measurements. As a result, the KPLO was accurately inserted into the ballistic lunar transfer (BLT) trajectory, satisfying all separation requirements at the target interface point (TIP), including launch injection energy per unit mass (C3), right ascension of the injection orbit apoapsis vector (RAV), and declination of the injection orbit apoapsis vector (DAV). The precise BLT trajectory insertion facilitated the smoother operation of the KPLO&rsquo;s remainder mission phase and enabled the utilization of reserved fuel, consequently significantly enhancing the possibilities of an extended mission. </P>
35
  • Hee-Bok Ahn
  • Journal of astronomy and space sciences
  • 40, n.2
  • pp.59-66
  • 2023
  • 원문 바로보기
Since the World Health Organization (WHO) officially announced a global pandemic on March 12, 2020, the aviation industry in the world has been experiencing difficulties for a long time. Meanwhile, the Ukraine war broke out in February, and from March 15, domestic airlines must operate air routes bypassing Russian airspace despite the longer flight time. Therefore, as the flight time increases, the cosmic radiation exposure dose of the crew members is also expected to increase. Here we compare the radiation exposure dose between the route doses for the eastern United States and Europe before and after the detour route usage. Through the comparison analysis, we tried to understand how cosmic radiation changes depending on the flight time and the latitude and which one contributes more. We expect that this study can be used for the policy update for the safety management of cosmic radiation for aircrews in Korea.
36
  • Mark Southwick Robinson
  • Journal of astronomy and space sciences
  • 40, n.4
  • pp.149-171
  • 2023
  • 원문 바로보기
ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.
37
  • Dongwoo Kim
  • Journal of astronomy and space sciences
  • 40, n.1
  • pp.35-44
  • 2023
  • 원문 바로보기
Surveillance and reconnaissance intelligence in the space domain will become increasingly important in future battlefield environments. Moreover, to assimilate the military provocations and trends of hostile countries, imagery intelligence of the highest possible resolution is required. There are many methods for improving the resolution of optical satellites when observing the ground, such as designing satellite optical systems with a larger diameter and lowering the operating altitude. In this paper, we propose a method for improving ground observation resolution by using an optical system for a previously designed low orbit satellite and lowering the operating altitude of the satellite. When the altitude of a satellite is reduced in a circular orbit, a large amount of thrust fuel is required to maintain altitude because the satellite's altitude can decrease rapidly due to atmospheric drag. However, by using the critical inclination, which can fix the position of the perigee in an elliptical orbit to the observation area, the operating altitude of the satellite can be reduced using less fuel compared to a circular orbit. This method makes it possible to obtain a similar observational resolution of a medium-sized satellite with the same weight and volume as a small satellite. In addition, this method has the advantage of reducing development and launch costs to that of a small-sized satellite. As a result, we designed an elliptical orbit. The perigee of the orbit is 300 km, the apogee is 8,366.52 km, and the critical inclination is 116.56&#x00B0;. This orbit remains at its lowest altitude to the Korean peninsula constantly with much less orbit maintenance fuel compared to the 300 km circular orbit.
38
  • Alexander Yushchenko
  • Journal of astronomy and space sciences
  • 40, n.1
  • pp.29-33
  • 2023
  • 원문 바로보기
An unexplained acceleration on the order of 10<sup>-8</sup> cm s<sup>-2</sup>, which is close to cH, where c is the speed of light and H is the Hubble constant, is detected in gravitationally bound systems of different scales, from the solar system to clusters of galaxies. We found that any test body located inside a fractal structure with fractal dimension D = 2 experiences acceleration of the same order and confirmed the previous work that photons propagating through this structure decrease the frequency owing to gravitational redshift. The acceleration can be directed against the movement of the test body. The fractal distribution of the matter should be at scales of at least hundreds of megaparsecs to a few gigaparsecs for the existence of this acceleration.
39
  • Lee, Young-Sook
  • Journal of astronomy and space sciences
  • 40, n.3
  • pp.101-111
  • 2023
  • 원문 바로보기
<P> We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (&ge; ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere-stratosphere-troposphere radar located in Esrange, Sweden (63.7&deg;N, 21&deg;E). The change in K-index in terms of MLT was high (K &ge; 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0-4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K &ge; 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3-4 MLT for K &ge; 3. From case studies focusing on the 0-3 MLT period, we observed persistent eastward-biased high velocities (&ge; 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85-88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms. </P>
40
  • Heon-Young Chang
  • Journal of astronomy and space sciences
  • 40, n.2
  • pp.67-77
  • 2023
  • 원문 바로보기
The Titius-Bode's relation has been historically successful in predicting the location of Ceres in the solar system, while its physical basis remains hidden. In this study, we attempt to answer the question of whether the Titius-Bode's relation is universally valid for exoplanetary systems with plural exoplanets. For this purpose, we statistically study the distribution of the ratio of the orbiting periods of two planets in 32 exoplanetary systems hosted by a single star. We only consider the period ratios derived from exoplanets orbiting a single star since celestial objects under investigation are kept as simple as possible and free from uncertainties such as the mass of the host star. We find that the distribution of period ratios of two exoplanets appears inconsistent with that derived from the Titius-Bode's relation using the &#x03C7;<sup>2</sup> test. We also found that the distance distribution in exoplanetary systems unlikely follows the uniform distribution or the Poisson's distribution. It is noted, however, that more rigorous statistical tests should be carried out to reach a more certain conclusion.