본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2023년까지 1,226 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,226건 (DB Construction : 1,226 Articles)
안내사항
총 게시글 1,226 페이지 4/123
31
  • Haridas, Annex Edappattu
  • Journal of astronomy and space sciences
  • 39, n.2
  • pp.35-42
  • 2022
  • 원문 바로보기
During their respective missions, the spacecraft Voyager and Cassini measured several Saturn magnetosphere parameters at different radial distances. As a result of information gathered throughout the journey, Voyager 1 discovered hot and cold electron distribution components, number density, and energy in the 6-18 Rs range. Observations made by Voyager of intensity fluctuations in the 20-30 keV range show electrons are situated in the resonance spectrum's high energy tail. Plasma waves in the magnetosphere can be used to locate Saturn's inner magnetosphere's plasma clusters, which are controlled by Saturn's spin. Electromagnetic electron cyclotron (EMEC) wave ring distribution function has been investigated. Kinetic and linear approaches have been used to study electromagnetic cyclotron (EMEC) wave propagation. EMEC waves' stability can be assessed by analyzing the dispersion relation's effect on the ring distribution function. The primary goal of this study is to determine the impact of the magnetosphere parameters which is observed by Cassini. The magnetosphere of Saturn has also been observed. When the plasma parameters are increased as the distribution index, the growth/damping rate increases until the magnetic field model affects the magnetic field at equator, as can be seen in the graphs. We discuss the outputs of our model in the context of measurements made in situ by the Cassini spacecraft.
32
  • Song, Hosub
  • Journal of astronomy and space sciences
  • 39, n.3
  • pp.109-116
  • 2022
  • 원문 바로보기
The small-scale magnetospheric and ionospheric plasma experiment (SNIPE) is a mission initiated by the Korea Astronomy and Space Science Institute (KASI) in 2017 and comprises four 6U-sized nano-satellites (Korea Astronomy and Space Science Institute Satellite-1, KASISat-1) flying in formations. The main goal of the SNIPE mission is to investigate the space environment in low Earth orbit at 500-km. Because Iridium & GPS Board (IGB) is installed on the KASISat-1, a communication simulation is required to analyze the contact number and the duration. In this study, communication simulations between the Iridium satellite network and KASISat-1 are performed using STK Pro (System Tool Kit Pro Ver 11.2) from the AGI (Analytical Graphics, Inc.). The contact number and durations were analyzed by each orbit and date. The analysis shows that the average access number per day is 38.714 times, with an average of 2.533 times per orbit for a week. Furthermore, on average, the Iridium satellite communication is linked for 70.597 min daily. Moreover, 4.625 min is the average duration of an individual orbit.
33
  • Park, Jaeheung
  • Journal of astronomy and space sciences
  • 39, n.3
  • pp.87-98
  • 2022
  • 원문 바로보기
The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.
34
  • Shukla, Kumari Neeta
  • Journal of astronomy and space sciences
  • 39, n.2
  • pp.67-77
  • 2022
  • 원문 바로보기
The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn's internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn's ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.
35
  • Park, Kihong
  • Journal of astronomy and space sciences
  • 39, n.1
  • pp.1-10
  • 2022
  • 원문 바로보기
The universe is thought to be filled with not only Standard Model (SM) matters but also dark matters. Dark matter is thought to play a major role in its construction. However, the identity of dark matter is as yet unknown, with various search methods from astrophysical observartion to particle collider experiments. Because of the cross-section that is a thousand times smaller than SM particles, dark matter research requires a large amount of data processing. Therefore, optimization and parallelization in High Performance Computing is required. Dark matter in hypothetical hidden sector is though to be connected to dark photons which carries forces similar to photons in electromagnetism. In the recent analysis, it was studied using the decays of a dark photon at collider experiments. Based on this, we studies double dark photon decays at lepton colliders. The signal channels are e<sup>+</sup>e<sup>-</sup> &#x2192; A'A' and e<sup>+</sup>e<sup>-</sup> &#x2192; A'A'&#x03B3; where dark photon A' decays dimuon. These signal channels are based on the theory that dark photons only decay into heavily charged leptons, which can explain the muon magnetic momentum anomaly. We scanned the cross-section according to the dark photon mass in experiments. MadGraph5 was used to generate events based on a simplified model. Additionally, to get the maximum expected number of events for the double dark photon channel, the detector efficiency for several center of mass (CM) energy were studied using Delphes and MadAnalysis5 for performance comparison. The results of this study will contribute to the search for double dark photon channels at lepton colliders.
36
  • Lee, Eunah
  • Journal of astronomy and space sciences
  • 39, n.4
  • pp.145-158
  • 2022
  • 원문 바로보기
The dynamics of the outer zone radiation belt has received a lot of attention mainly due to the correlation between the occurrence of enhancing relativistic electron flux and spacecraft operation anomalies or even failures (e.g., Baker et al. 1994). Relativistic electron events are often observed during great storms associated with ultra low frequency (ULF) waves. For example, a large buildup of relativistic electrons was observed during the great storm of March 24, 1991 (e.g., Li et al. 1993; Hudson et al. 1995; Mann et al. 2013). However, the dominant processes which accelerate magnetospheric radiation belt electrons to MeV energies are not well understood. In this paper, we present observations of Pc5 ULF waves in the recovery phase of the Bastille day storm of July 16, 2000 and electron and proton flux simultaneously oscillating with the same frequencies as the waves. The mechanism for the observed electron and proton flux modulations is examined using ground-based and satellite observations. During this storm time, multiple packets of discrete frequency Pc5 ULF waves appeared associated with energetic particle flux oscillations. We model the drift paths of electrons and protons to determine if the particles drift through the ULF wave to understand why some particle fluxes are modulated by the ULF waves and others are not. We also analyze the flux oscillations of electrons and protons as a function of energy to determine if the particle modulations are caused by a ULF wave drift resonance or advection of a particle density gradient. We suggest that the energetic electron and proton modulations by Pc5 ULF waves provide further evidence in support of the important role that ULF waves play in outer radiation belt dyanamics during storm times.
37
  • Song, Seok-Min
  • Journal of astronomy and space sciences
  • 39, n.4
  • pp.159-167
  • 2022
  • 원문 바로보기
Because of the small number of spacecraft available in the Earth's magnetosphere at any given time, it is not possible to obtain direct measurements of the fundamental quantities, such as the magnetic field and plasma density, with a spatial coverage necessary for studying, global magnetospheric phenomena. In such cases, empirical as well as physics-based models are proven to be extremely valuable. This requires not only having high fidelity and high accuracy models, but also knowing the weakness and strength of such models. In this study, we assess the accuracy of the widely used Tsyganenko magnetic field models, T96, T01, and T04, by comparing the calculated magnetic field with the ones measured in-situ by the GOES satellites during geomagnetically disturbed times. We first set the baseline accuracy of the models from a data-model comparison during the intervals of geomagnetically quiet times. During quiet times, we find that all three models exhibit a systematic error of about 10% in the magnetic field magnitude, while the error in the field vector direction is on average less than 1%. We then assess the model accuracy by a data-model comparison during twelve geomagnetic storm events. We find that the errors in both the magnitude and the direction are well maintained at the quiet-time level throughout the storm phase, except during the main phase of the storms in which the largest error can reach 15% on average, and exceed well over 70% in the worst case. Interestingly, the largest error occurs not at the Dst minimum but 2-3 hours before the minimum. Finally, the T96 model has consistently underperformed compared to the other models, likely due to the lack of computation for the effects of ring current. However, the T96 and T01 models are accurate enough for most of the time except for highly disturbed periods.
38
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 39, n.4
  • pp.181-194
  • 2022
  • 원문 바로보기
Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.
39
  • Portnov, Yuriy A.
  • Journal of astronomy and space sciences
  • 39, n.3
  • pp.99-108
  • 2022
  • 원문 바로보기
There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.
40
  • Kim, Kyung-Chan
  • Journal of astronomy and space sciences
  • 39, n.1
  • pp.11-22
  • 2022
  • 원문 바로보기
It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth's magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012-2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L<sup>*</sup>), magnetic local time (MLT), magnetic latitude (&#x03BB;), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment-defined by the ratio of the plasma frequency (f<sub>pe</sub>) to the electron cyclotron frequency (f<sub>ce</sub>)-without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L<sup>*</sup> < 4. In contrast, the f<sub>pe</sub>/f<sub>ce</sub> ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L<sup>*</sup> = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of > 0.9. The model is valid in all MLTs, 2 &#x2264; L<sup>*</sup> < 6, |&#x03BB;| < 20&#x00B0;, and Kp &#x2264; 6.