본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 60/122
591
  • KIM JONGSOO
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.237-241
  • 2004
  • 원문 바로보기
We perform numerical experiments on supernova-driven turbulent flows in order to see whether or not supernovae playa major role in driving turbulence in the interstellar medium. In a <TEX>$(200pc)^3$</TEX> computational box, we set up, as initial conditions, uniformly magnetized gas distributions with different pairs of hydrogen number densities and magnetic field strengths, which cover the observed values in the Galactic midplane. We then explode supernovae at randomly chosen positions at a Galactic explosion rate and follow up the evolution of the supernova-driven turbulent flows by integrating numerically the ideal MHD equations with cooling and heating terms. From the numerical experiments we find that the density-weighted velocity dispersions of the flows are in the range of 5-10 km <TEX>$s^{-l}$</TEX>, which are consistent with the observed velocity dispersions of cold and warm neutral media. Additionally, we find that strong compressible flows driven by supernova explosions quickly change into solenoidal flows.
592
  • LEE S. M.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.249-255
  • 2004
  • 원문 바로보기
Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model employs the observed vertical stratifications for the gas density and the gravitational acceleration in the Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson's equation for the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into self and external gravities. The linear stability analysis provides the corresponding dispersion relations. The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40 Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and southern sides of the plane, in an alternate manner.
593
  • SUH KYUNG- WON
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.289-294
  • 2004
  • 원문 바로보기
The main sources of interstellar dust are believed to be dust envelopes around AGB stars. The outflowing envelopes around the long period pulsating variables are very suitable place for massive dust formation. Oxygen-rich silicate dust grains or carbon-rich dust grains form in the envelopes around AGB stars depending on the chemical composition of the stellar surface. The dust grains expelled from AGB stars get mixed up and go through some physical and chemical changes in interstellar medium. There are similarities and differences between interstellar dust and dust grains in AGB stars. The mass cycle in the Galaxy may be best manifested by the fact that the dust grains at various regions have many similarities and understandable differences.
594
  • INOUE SUSUMU
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.447-454
  • 2004
  • 원문 바로보기
During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of <TEX>$^6Li$</TEX> by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.
595
  • BOWYER STUART
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.579-581
  • 2004
  • 원문 바로보기
Recently, claims have been made of the detection of 'warm-hot' gas in the intergalactic medium. Kaastra et al. (2003) claimed detection of <TEX>${\~} 10^6$</TEX> K material in the Coma Cluster but studies by Arnaud et al. (2001), and our analysis of the Chandra observations of Coma (Vikhlinin et al. 2001), find no evidence for a <TEX>$10^6$</TEX> K gas in the cluster. Finoguenov et al. (2003) claimed the detection of <TEX>$3 {\times} 10^6$</TEX> gas slightly off-center from the Coma Cluster. However, our analysis of ROSAT data from this region shows no excess in this region. We propose an alternative explanation which resolves all these conflicting reports. A number of studies (e.g. Robertson et al., 2001) have shown that the local interstellar medium undergoes charge exchange with the solar wind. The resulting recombination spectrum shows lines of O VII and O VIII (Wargelin et al. 2004). Robertson & Cravens (2003) have .shown that as much as <TEX>$25\%$</TEX> of the Galactic polar flux is heliospheric recombination radiation and that this component is highly variable. Sporadic heliospheric emission could account for all the claims of detections of 'warm-hot' gas and explain the conflicts cited above.
596
  • KRONBER PHILIPP P.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.501-507
  • 2004
  • 원문 바로보기
The uniquely large dimensions of Giant radio galaxies (GRGs) make it possible to probe for stringent limits on total energy content, Faraday rotation, Alfven speeds, particle transport and radiation loss times. All of these quantities are more stringently limited or specified for GRG's than in more 'normal' FRII radio sources. I discuss how both global and detailed analyses of GRG's lead to constraints on the CR electron acceleration mechanisms in GRG's and by extension in all FRII radio sources. The properties of GRG's appear to rule out large scale Fermi-type shock acceleration. The plasma parameters in these systems set up conditions that are favorable for magnetic reconnection, or some other very efficient process of conversion of magnetic to particle energy. We conclude that whatever mechanism operates in GRG's is probably the primary extragalactic CR acceleration mechanism in the Universe.
597
  • RICHER M. G.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.269-272
  • 2004
  • 원문 바로보기
We present the first results of a wide field survey for planetary nebulae throughout M31 undertaken at the KPNO 0.9m telescope with the Mosaic camera. So far, images in [O III]<TEX>$\lambda$</TEX>5007 and its continuum filter have been analyzed. Our survey appears to be at least <TEX>$90\%$</TEX> complete to about 2 mag below the peak of the planetary nebula luminosity function. Over 900 planetary nebulae candidates have been found within a 12 square degree area.
598
  • KIM WOONG-TAE
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.243-248
  • 2004
  • 원문 바로보기
Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.
599
  • VOGT CORINA
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.349-353
  • 2004
  • 원문 바로보기
Magnetic fields are an important ingredient of galaxy clusters and are indirectly observed on cluster scales as radio haloes and radio relics. One promising method to shed light on the properties of cluster wide magnetic fields is the analysis of Faraday rotation maps of extended extragalactic radio sources. We developed a Fourier analysis for such Faraday rotation maps in order to determine the magnetic power spectra of cluster fields. In an advanced step, here we apply a Bayesian maximum likelihood method to the RM map of the north lobe of Hydra A on the basis of our Fourier analysis and derive the power spectrum of the cluster magnetic field. For Hydra A, we measure a spectral index of -5/3 over at least one order of magnitude implying Kolmogorov type turbulence. We find a dominant scale of about 3 kpc on which the magnetic power is concentrated, since the magnetic autocorrelation length is <TEX>${\lambda}_B = 3 {\pm} 0.5\;kpc$</TEX>. Furthermore, we investigate the influences of the assumption about the sampling volume (described by a window function) on the magnetic power spectrum. The central magnetic field strength was determined to be <TEX>${\~}7{\pm}2{\mu}G$</TEX> for the most likely geometries.
600
  • BRUNETTI GIANFRANCO
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.493-500
  • 2004
  • 원문 바로보기
The existence and extent of non-thermal phenomena in galaxy clusters is now well established. A key question in our understanding of these phenomena is the origin of the relativistic electrons which may be constrained by the modelling of the fine radio properties of radio halos and of their statistics. In this paper we argue that present data favour a scenario in which the emitting electrons in the intracluster medium (ICM) are reaccelerated in situ on their way out. An overview of turbulent-particle acceleration models is given focussing on recent time-dependent calculations which include a full coupling between particles and MHD waves.