본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 60/122
591
  • KIM WOONG-TAE
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.243-248
  • 2004
  • 원문 바로보기
Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.
592
  • SUTO YASUSHI
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.387-392
  • 2004
  • 원문 바로보기
X-ray observations of galaxy clusters have played an important role in cosmology, especially in determining the cosmological density parameter and the fluctuation amplitude. While they represent the bright side of the universe together with the other probes including the cosmic microwave background and the Type Ia supernovae, the resulting information clearly indicates that the universe is dominated by dark components. Even most of cosmic baryons turns out to be dark. In order to elucidate the nature of dark baryons, we propose a dedicated soft-X-ray mission, DIOS (Diffuse Intergalactic Oxygen Surveyor). Recent numerical simulations suggest that approximately 30 to 50 percent of total baryons at z = 0 take the form of the warm-hot intergalactic medium (WHIM) with <TEX>$10^5K < T < 10^7K $</TEX>which has evaded the direct detection so far. The unprecedented energy resolution (<TEX>${\~} 2eV$</TEX>) of the XSA (X-ray Spectrometer Array) on-board DIGS enables us to identify WHIM with gas temperature <TEX>$T = 10^6 {\~} 10^7K$</TEX> and overdensity <TEX>$\delta$</TEX> = 10 <TEX>${\~}$</TEX> 100 located at z < 0.3 through emission lines of OVII and OVIII. In addition, WHIMs surrounding nearby clusters are detectable with a typical exposure time of a day, and thus constitute realistic and promising targets for DIOS.
593
  • CASSANO R.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.589-592
  • 2004
  • 원문 바로보기
We calculate the probability to form giant radio halos (<TEX>${\~}$</TEX> 1 Mpc size) as a function of the mass of the host clusters by using a Statistical Magneto-Turbulent Model (Cassano & Brunetti, these proceedings). We show that the expectations of this model are in good agreement with the observations for viable values of the parameters. In particular, the abrupt increase of the probability to find radio halos in the more massive galaxy clusters (<TEX>$M {\ge} 2{\times}10^{15} M_{\bigodot}$</TEX>) can be well reproduced. We calculate the evolution with redshift of such a probability and find that giant radio halos can be powered by particle acceleration due to MHD turbulence up to z<TEX>${\~}$</TEX>0.5 in a ACDM cosmology. Finally, we calculate the expected Luminosity Functions of radio halos (RHLFs). At variance with previous studies, the shape of our RHLFs is characterized by the presence of a cut-off at low synchrotron powers which reflects the inefficiency of particle acceleration in the case of less massive galaxy clusters.
594
  • HALLMAN ERIC J.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.593-596
  • 2004
  • 원문 바로보기
We introduce a method of identifying evidence of shocks in the X-ray emitting gas in clusters of galaxies. Using information from synthetic observations of simulated clusters, we do a blind search of the synthetic image plane. The locations of likely shocks found using this method closely match those of shocks identified in the simulation hydrodynamic data. Though this method assumes nothing about the geometry of the shocks, the general distribution of shocks as a function of Mach number in the cluster hydrodynamic data can be extracted via this method. Characterization of the cluster shock distribution is critical to understanding production of cosmic rays in clusters and the use of shocks as dynamical tracers.
595
  • RHEE MYUNG-HYUN
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.3
  • pp.91-117
  • 2004
  • 원문 바로보기
We analyze the dependence of the mass-to-light ratio of spiral galaxies on the present star formation rate (SFR), and find that galaxies with high present star formation rates have low mass-to-light ratios, presumably as a result of the enhanced luminosity. On this basis we argue that variations in the stellar content of galaxies result in a major source of intrinsic scatter in the Tully-Fisher relation (TF relation). Ideally one should use a 'population-corrected' luminosity. We have also analyzed the relation between the (maximum) luminous mass and rotational velocity, and find it to have a small scatter. We therefore propose that the physical basis of the Tully-Fisher relation lies in a relationship between the luminous mass and rotational velocity, in combination with a 'well-behaved' relation between luminous and dark matter. This implies that the Tully-Fisher relation is a combination of two independent relations: (i) a relation between luminosity and (luminous) mass, based mainly on the star formation history in galaxies, and (ii) a relation between mass and rotation velocity, which is the outcome of the process of galaxy formation. In addition to a 'population-corrected' Tully-Fisher relation, one may also use the relation between mass and luminosity, and the relation between luminous mass and rotation velocity as distance estimators.
596
  • REIMER OLAF
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.307-313
  • 2004
  • 원문 바로보기
Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.
597
  • NARASIMHA D.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.355-359
  • 2004
  • 원문 바로보기
Differential Faraday Rotation measurements between the images of same background source, of multiply-imaged gravitational lens systems can be effectively used to provide a valuable probe to establish the existence of large-scale ordered magnetic fields in lensing galaxies as well as galaxy clusters. Estimates of the magnetic field in lens galaxies, based on the radio polarization measurements do not appear to show any clear evidence for evolution with redhsift of the coherent large scale magnetic field between redshift of 0.9 and the present epoch. However, our method clearly establishes the presence of coherent large scale magnetic field in giant ellitpical galaxies.
598
  • SARAZIN CRAIG L.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.433-438
  • 2004
  • 원문 바로보기
Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects are discussed. Mergers drive shocks into the intracluster gas, and these shocks heat the intracluster gas. As a result of the impulsive heating and compression associated with mergers, there is a large transient increase in the X-ray luminosities and temperatures of merging clusters. These merger boost can affect X-ray surveys of clusters and their cosmological interpretation. Similar boosts occur in the strong lensing cross-sections and Sunyaev-Zeldovich effect in merging clusters. Merger shock and turbulence associated with mergers should also (re)accelerate nonthermal relativistic particles. As a result of particle acceleration in shocks and turbulent acceleration following mergers, clusters of galaxies should contain very large populations of relativistic electrons and ions. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these shocks will also be described. Gamma-ray observations with GLAST seem particularly promising.
599
  • OKABE NOBUHIRO
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.547-551
  • 2004
  • 원문 바로보기
We showed that magnetic fields are generated in the plasma which have the temperature inhomogeneities. The mechanism is the same as the Weibel instability because the velocity distribution functions are at non-equilibrium and anisotropic under the temperature gradients. The growth timescale is much shorter than the dynamical time of structure formation. The coherence length of magnetic fields at the saturated time is much shorter than kpc scale and then, at nonlinear phase, become longer by inverse-cascade process. We report the application of our results to clusters of galaxies, not including hydrodynamic effects.
600
  • CLARKE TRACY E.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.337-342
  • 2004
  • 원문 바로보기
The presence of magnetic fields in the intracluster medium in clusters of galaxies has been revealed through several different observational techniques. These fields may be dynamically important in clusters as they will provide additional pressure support to the intracluster medium as well as inhibit transport mechanisms such as thermal conduction. Here, we review the current observational state of Faraday rotation measure studies of the cluster fields. The fields are generally found to be a few to 10 <TEX>$\mu$</TEX>G in non-cooling core clusters and ordered on scales of 10 - 20 kpc. Studies of sources at large impact parameters show that the magnetic fields extend from cluster cores to radii of at least 500 kpc. In central regions of cooling core systems the field strengths are often somewhat higher (10 - 40 <TEX>$\mu$</TEX>G) and appear to be ordered on smaller scales of a few to 10 kpc. We also review some of the recent work on interpreting Faraday rotation measure observations through theory and numerical simulations. These techniques allow us to build up a much more detailed view of the strength and topology of the fields.