본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 57/122
561
  • SOHN J,
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.261-263
  • 2004
  • 원문 바로보기
We present a progress report on HCN(1-0) line observations toward starless cores to probe inward motions. We have made a single pointing survey toward the central regions of 85 starless cores and performed mapping observations of 6 infall candidate starless cores. The distributions of the velocity difference between HCN(1-0) hyperfine lines and the optically thin tracer <TEX>$N_2H^+$</TEX>(1-0) are significantly skewed to the blue, meaning that HCN(1-0) frequently detects inward motions. Their skewness to the blue is even greater than that of CS(2-1) Lee et al., possibly implying more infall occurrence than CS(1-0). We identify 19 infall candidates by using several characteristics illustrating spectral infall asymmetry seen in HCN(1-0) hyperfine lines, CS(3-2), CS(2-1), <TEX>$DCO^+(2-1)$</TEX> and <TEX>$N_2H^+$</TEX> observations. The HCN(1-0) F(O-l) with the least optical depth usually shows a similar intensity distribution to that of <TEX>$N_2H^+$</TEX> which closely traces the density distribution of the cores, indicating that HCN(1-0) is less chemically affected and so believed to reflect kinematics occurring in rather inner regions of the cores. Detailed radiative transfer model fits of the spectra are underway to analyze central infall kinematics in starless cores.
562
  • LEE J.-J.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.223-224
  • 2004
  • 원문 바로보기
The Tycho supernova remnant (SNR), as one of the few historical SNRs, has been widely studied in various wavebands and previous observations have shown evidence that Tycho is interacting with a dense ambient medium toward the northeast direction, In this paper, we report our high-resolution (16') <TEX>$^{12}CO$</TEX> observation of the remnant using the Nobeyama 45m radio telescope. The Nobeyama data shows that a large molecular cloud surrounds the SNR along the northeastern boundary. We suggest that the Tycho SNR and the molecular cloud are both located in the Perseus arm and that the dense medium interacting with the SNR is possibly the molecular cloud. We also discuss the possible connection between the molecular cloud and the Balmer-dominated optical filaments, and suggest that the preshock gas may be accelerated within the cosmic ray and/or fast neutral precursor.
563
  • KURTZ S.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.4
  • pp.265-268
  • 2004
  • 원문 바로보기
Molecular clouds present many levels of structure, including clumps and cores of varying size and density. We present a brief summary of these cores, describing their observed physical properties and their place in the star formation process. We conclude with some speculation about pre-proto-stellar stages of molecular cores and the observational challenges in their observation.
564
  • KIM S.-J.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.1
  • pp.55-59
  • 2004
  • 원문 바로보기
We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron(<TEX>$T_e$</TEX>) and proton(<TEX>$T_p$</TEX>) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: <TEX>$T_e$</TEX> is <TEX>$7.4{\times}10^5$</TEX> K and density(n) is <TEX>$1.7 {\times}10^7\;cm^{-3}$</TEX> in the corona. At 1 AU <TEX>$T_e$</TEX> is <TEX>$2.1 {\times} 10^5$</TEX> K and n is <TEX>$0.3 cm^{-3}$</TEX>, and V is <TEX>$511 km\;s^{-1}$</TEX>. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.
565
  • FUJITA YUTAKA
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.571-574
  • 2004
  • 원문 바로보기
Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T <TEX>${\~}$</TEX>2-10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the 'cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.
566
  • RYU DONGSU
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.477-482
  • 2004
  • 원문 바로보기
Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.
567
  • KRONBERG PHILIPP P.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.343-347
  • 2004
  • 원문 바로보기
The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > <TEX>${\~}0.l{\mu}G$</TEX> or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, <TEX>${\~}$</TEX>10 Gyr ago, as now.
568
  • KANG HYESUNG
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.405-412
  • 2004
  • 원문 바로보기
Cosmological shocks form as an inevitable consequence of gravitational collapse during the large scale structure formation and cosmic-rays (CRs) are known to be accelerated at collisionless shocks via diffusive shock acceleration (DSA). We have calculated the evolution of CR modified shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of DSA in 1D quasi-parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc <TEX>$\ge$</TEX> 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. We find that <TEX>$10^{-4} - 10^{-3}$</TEX> of the particles passed through the shock are accelerated to form the CR population, and the injection rate is higher for shocks with higher Mach number. The CR acceleration efficiency increases with shock Mach number, but it asymptotes to <TEX>${\~}50\%$</TEX> in high Mach number shocks, regardless of the injection rate and upstream CR pressure. On the other hand, in moderate strength shocks (<TEX>$M_s {\le} 5$</TEX>), the pre-existing CRs increase the overall CR energy. We conclude that the CR acceleration at cosmological shocks is efficient enough to lead to significant nonlinear modifications to the shock structures.
569
  • KUWABARA TAKUHITO
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.601-603
  • 2004
  • 원문 바로보기
We present the results of the linear analysis for the Parker-Jeans instability in the magnetized gas disks including the effect of cosmic-ray diffusion along the magnetic field lines. We adopted an uni-formly rotating two temperature layered disk with a horizontal magnetic fields and solved the perturbed equations numerically. Fragmentation of gases takes place and filamentary structures are formed by the growth of the instability. Nagai et al. (1998) showed that the direction of filaments being formed by the Parker-Jeans instability depends on the strength of pressure outside the unperturbed gas disk. We found that at some range of external pressures the direction of filaments is also governed by the value of the diffusion coefficient of CR along the magnetic field lines k.
570
  • FERETTI L.
  • Journal of the Korean astronomical society = 천문학회지
  • 37, n.5
  • pp.315-322
  • 2004
  • 원문 바로보기
Several arguments have been presented in the literature to support the connection between radio halos and cluster mergers. The spectral index distributions of the halos in A665 and A2163 provide a new strong confirmation of this connection, i.e. of the fact that the cluster merger plays an important role in the energy supply to the radio halos. Features of the spectral index (flattening and patches) are indication of a complex shape of the radiating electron spectrum, and are therefore in support of electron reacceleration models. Regions of flatter spectrum are found to be related to the recent merger. In the undisturbed cluster regions, instead, the spectrum steepens with the distance from the cluster center. The plot of the integrated spectral index of a sample of halos versus the cluster temperature indicates that clusters at higher temperature tend to host halos with flatter spectra. This correlation provides further evidence of the connection between radio emission and cluster mergers.