본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 41/122
401
  • Cho, Jung-Yeon
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.113-118
  • 2007
  • 원문 바로보기
Recently far infra-red (FIR) polarization of the <TEX>$850{\mu}m$</TEX> continuum emission from T Tauri disks has been detected. The observed degree of polarization is around 3 %. Since thermal emission from dust grains dominates the spectral energy distribution at the FIR regime, dust grains might be the cause of the polarization. We explore alignment of dust grains by radiative torque in T Tauri disks and provide predictions for polarized emission for disks viewed at different wavelengths and viewing angles. In the presence of magnetic field, these aligned grains produce polarized emission in infrared wavelengths. When we take a Mathis-Rumpl-Nordsieck-type distribution with maximum grain size of <TEX>$500-1000{\mu}m$</TEX>, the degree of polarization is around 2-3 % level at wavelengths larger than <TEX>${\sim}100{\mu}m$</TEX>. Our study indicates that multifrequency infrared polarimetric studies of protostellar disks can provide good insights into the details of their magnetic structure.
402
  • Yoo, Kye-Hwa
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.2
  • pp.39-47
  • 2007
  • 원문 바로보기
A high resolution spectrum of PU Vul obtained at Bohyunsan Astronomy Observatory on April 9, 2004 is presented. At this phase, PU Vul was an emission-line star and its continuum was very weak. Emission lines of He II, H I, [Ne IV], [N II], [O III], [Ar V ] and [Fe VII] dominated the spectrum of PU Vul. Many of them exhibited hat-top profiles with strong and multi-peaked emissions on flat-tops of their profiles. Radial velocities for these lines were measured. Origins of the spectral lines are discussed in terms of the wind and the photoionization models.
403
  • Seo, Y.M.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.119-122
  • 2007
  • 원문 바로보기
From the HCN observations of dense molecular cloud L694-2, Lee et al.(2007) determined internal distributions of density and velocity for the cloud. The density profile collaborates roughly with the Bonnor- Ebert gas sphere, but the velocity field departs significantly from the result of numerical simulations that are started from the BE sphere. Taking L694-2 as an example of collapsing clouds, we have performed a series of collapse simulations and determined initial configurations for the cloud in such a way that the resulting density and velocity profiles both match with the empirically deduced ones. Among many trial configurations the cloud which is initially uniform in density and bound by an expanding envelop depicts most closely the empirically obtained profiles of both density and velocity.
404
  • Silich, Sergiy
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.187-188
  • 2007
  • 원문 바로보기
This contribution to the IV Korea-Mexico meeting deals with the hydrodynamics of the matter reinserted within super star clusters (SSCs) by both stellar winds and supernova explosions, results recently printed in The Astrophysical Journal (Silich et al. 2007). The motivation of such a project arose from the persistent presence of the small mass and compact HII regions that sit right on top of many massive and compact SSCs, from which one expects a large mechanical energy power. The data used for our calculations appear only recently (see Smith et al. 2006) for the massive and compact SSC M82-A1. We presented in our paper the calculated flow, derived through analytical and semi-analytical methods, which led to almost identical results. We have found out that the only way of accommodating a compact HII region (4.5 pc in radius, in the case of M82-A1) on top of a 6.3 Myr old and massive (> <TEX>$10^6M_{\bigodot}$</TEX>) SSC with a half light radius of 3 pc, requires of two assumptions: a very low heating efficiency (< 10%) within the cluster, what leads to a bimodal solution (see Tenorio-Tagle et al. 2007) and a high pressure in the surrounding medium.
405
  • Kim, Hyo-Sun
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.179-182
  • 2007
  • 원문 바로보기
Dynamical friction plays an important role in reducing angular momenta of objects in orbital motions. While astronomical objects usually follow curvilinear orbits, most previous studies focused on the linear-trajectory cases. Here, we present the gravitational wake due to, and dynamical friction on, a perturber moving on a circular orbit in a uniform gaseous medium using a semi-analytic method. The circular orbit causes the density wakes to bend along the orbit into asymmetric configurations, resulting in the drag forces in both opposite (azimuthal) and lateral (radial) directions to the perturber motion, although the latter does not contribute to the orbital decay much. For a subsonic perturber, the bending of a wake is only modest and the resulting drag force in the opposite direction is remarkably similar to the linear-trajectory counterpart. On the other hand, a supersonic perturber is able to overtake its own wake, possibly multiple times, creating a high-density trailing tail. Despite the dramatic changes in the wake morphologies, the azimuthal drag force is in surprisingly good agreement with the formulae of Ostriker for the linear-trajectory cases, provided <TEX>$V_pt=2R_p,\;where\;V_p\;and\;R_p$</TEX> are the velocity and orbital radius of the perturber, respectively.
406
  • Selim, H.H.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.2
  • pp.49-60
  • 2007
  • 원문 바로보기
This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.
407
  • Sanchez-Salcedo, F.J.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.171-177
  • 2007
  • 원문 바로보기
In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.
408
  • Elias, Federico
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.141-145
  • 2007
  • 원문 바로보기
Here we analyze if the ionized shells associated with giant HII regions represent the progenitors of the larger neutral hydrogen supershells detected in the Milky Way and other spiral and dwarf irregular galaxies. We calculate the evolutionary tracks that 12 HII shells found by Relano et al. (2005, 2007) would have if they expanded into the interstellar medium because of multiple supernovae explosions occurring inside the cavity. We find, contrary to Relano et al. (2007), that the evolutionary tracks of these HII shells are inconsistent with the observed parameters of the largest and most massive neutral hydrogen supershells. Thus, an additional energy source to the multiple supernovae explosions is required in order to explain the origin of the most massive neutral hydrogen shells.
409
  • Ann, H.B.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.1
  • pp.9-16
  • 2007
  • 원문 바로보기
We examine the morphology and luminosity distribution of a strongly warped spiral galaxy PGC 20348 by conducting a detailed BVI CCD surface photometry using BOAO 1.8m telescope. The radial surface brightness shows a break at warp radius <TEX>$(r_{\omega})$</TEX> with a shallow gradient in the inner disk and a steeper gradient in the outer disk. The luminosity of east side of the disk is <TEX>${\sim}0.5$</TEX> mag fainter than the west side at r > <TEX>$r_{\omega}$</TEX>. The reason for the asymmetric luminosity distribution is thought to be the asymmetric flarings that result in the formation of a large diffuse region at the edge of the east disk and a smaller diffuse region at the west disk. The vertical luminosity profiles show a thick disk component whose scale heights increase with increasing galactocentric distances. The warp of PGC 20348 seems to be made by the tidal interactions with the two massive companion galaxies since the flarings and radial increase of disk scale heights are thought to be general properties of tidally perturbed disks. According to the colors of the two clumps inside the diffuse region at the edge of the east disk, they seem to be sites of active star formation triggered by tidal forces from the companion galaxies.
410
  • Migenes, V.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.127-129
  • 2007
  • 원문 바로보기
It is well known that water vapor maser emission at 22.2 GHz is associated with the earliest stages of both low- and high-mass star formation and it can be considered a reliable diagnostic of their evolutionary state. Bright Rimmed Clouds (BRCs) are clouds that have been compressed by an external ionization-shock front which focuses the neutral gas into compact globules. The boundary layer between the neutral gas and the gas ionized by the incident photons is often called 'bright rim' but the clumps are sometimes classified also as speck globules or cometary globules depending on their appearance. Small globules with bright rims have been considered to be potential sites of star formation and have been studied in several individual regions. We present results from high resolution VLA observations searching for new candidates of recent star formation in bright-rimmed clouds/globules associated with IRAS point sources.