본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,253 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,253건 (DB Construction : 1,253 Articles)
안내사항
총 게시글 1,253 페이지 51/126
501
The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.
502
  • Oh, Kyu-Dong
  • Journal of astronomy and space sciences
  • 27, n.2
  • pp.69-74
  • 2010
  • 원문 바로보기
We present new BVR CCD photometric light curves for the close binary star V445 Cep. A new photometric solution and absolute physical dimensions of the system were derived by applying the Wilson-Devinney program to our observed light curves and radial velocity curves published by Pych et al. The evolutional status of V445 Cep was found to coincide with those of the general low mass ratio contact binary systems.
503
  • Park, Chang-Geun
  • Journal of astronomy and space sciences
  • 27, n.4
  • pp.367-375
  • 2010
  • 원문 바로보기
In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, from 0000 UTC, June 1, 2007 to 1200 UTC, May 31, 2009, and analyzed the radiosonde bias between the day and the night. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. In addition, for all the rainfall events, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased was significantly less distinctive in nighttime than in daytime. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the second year, regardless of nighttime or daytime rainfall, and the non-rainfall root mean square error (RMSE) was similar to that of the previous studies, while the rainfall RMSE was larger to a certain extent.
504
  • Kwak, Young-Sil
  • Journal of astronomy and space sciences
  • 27, n.4
  • pp.329-335
  • 2010
  • 원문 바로보기
We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative <TEX>$B_y$</TEX> condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-<TEX>$B_y$</TEX> condition, there is a decrease in the early morning hours including the dawn side poleward of <TEX>$-70^{\circ}$</TEX>. For negative <TEX>$B_z$</TEX>, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-<TEX>$B_z$</TEX> condition shows decreases generally. The density difference is more significant under negative-<TEX>$B_z$</TEX> condition than under positive-<TEX>$B_z$</TEX> condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.
505
  • Jang, Sung-Soo
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.253-262
  • 2010
  • 원문 바로보기
The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.
506
  • Lee, Chang-Hoon
  • Journal of astronomy and space sciences
  • 27, n.2
  • pp.145-152
  • 2010
  • 원문 바로보기
In this paper, we developed a local oscillator (LO) system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO) of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL) module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI) receiver and single dish radio astronomy receiver at the 3 mm frequency band.
507
  • Sohn, Dong-Hyo
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.231-238
  • 2010
  • 원문 바로보기
We analyzed global positioning system (GPS)-derived precipitable water vapor (PWV) trends of the Korea Astronomy and Space Science Institute 5 stations (Seoul, Daejeon, Mokpo, Milyang, Sokcho) where Korea Meteorological Administration meteorological data can be obtained at the same place. In the least squares analysis, the GPS PWV time series showed consistent positive trends (0.11 mm/year) over South Korea from 2000 to 2009. The annual increase of GPS PWV was comparable with the 0.17 mm/year and 0.02 mm/year from the National Center for Atmospheric Research Earth Observing Laboratory and Atmospheric InfraRed Sounder, respectively. For seasonal analysis, the increasing tendency was found by 0.05 mm/year, 0.16 mm/year, 0.04 mm/year in spring (March-May), summer (June-August) and winter (December-February), respectively. However, a negative trend (-0.14 mm/year) was seen in autumn (September-November). We examined the relationship between GPS PWV and temperature which is the one of the climatic elements. Two elements trends increased during the same period and the correlation coefficient was about 0.8. Also, we found the temperature rise has increased more GPS PWV and observed a stronger positive trend in summer than in winter. This is characterized by hot humid summer and cold dry winter of Korea climate and depending on the amount of water vapor the air contains at a certain temperature. In addition, it is assumed that GPS PWV positive trend is caused by increasing amount of saturated water vapor due to temperature rise in the Korean Peninsula. In the future, we plan to verify GPS PWV effectiveness as a tool to monitor changes in precipitable water through cause analysis of seasonal trends and indepth/long-term comparative analysis between GPS PWV and other climatic elements.
508
  • Kim, Yong-Ha
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.181-188
  • 2010
  • 원문 바로보기
We have carried out all-sky imaging of OH Meinel, <TEX>$O_2$</TEX> atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea (<TEX>$36.2^{\circ}$</TEX> N, <TEX>$128.9^{\circ}$</TEX> E, Alt = 1,124 m). We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds) are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.
509
  • Lee, Jae-Yoon
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.221-230
  • 2010
  • 원문 바로보기
A 4+12+16 amplitude phase shift keying (APSK) modulation outperforms other 32-APSK modulations in a nonlinear additive white Gaussian noise (AWGN) channel because of its intrinsic robustness against AM/AM and AM/PM distortions caused by the nonlinear characteristics of a high-power amplifier. Thus, this modulation scheme has been adopted in the digital video broadcasting-satellite2 European standard. And it has been considered for high rate transmission of telemetry data on deep space communications in consultative committee for space data systems which provides a forum for discussion of common problems in the development and operation of space data systems. In this paper, we present an improved bits-to-symbol mapping scheme with a better bit error rate for a 4+12+16 APSK signal in a nonlinear AWGN channel and propose a simple signal detection algorithm for the 4+12+16 APSK from the presented bit mapping.
510
  • Rew, Dong-Young
  • Journal of astronomy and space sciences
  • 27, n.4
  • pp.377-382
  • 2010
  • 원문 바로보기
In lunar explorer development program, computer simulator is necessary to provide virtual environments that vehicle confronts in lunar transfer, orbit, and landing missions, and to analyze dynamic behavior of the spacecraft under these environments. Objective of simulation differs depending on its application in spacecraft development cycle. Scope of use cases considered in this paper includes simulation of software based, processor and/or hardware in the loop, and support of ground-based flight test of developed vehicle. These use cases represent early phase in development cycle but reusability of modeling results in the next design phase is considered in defining requirements. A simulator architecture in which simulator platform is located in the middle and modules for modeling, analyzing, and three dimensional visualizing are connected to that platform is suggested. Baseline concepts and requirements for simulator development are described. Result of trade study for selecting simulation platform and approaches of defining other simulator components are summarized. Finally, characters of lunar elevation map data which is necessary for lunar terrain generation is described.