본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,255 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,255건 (DB Construction : 1,255 Articles)
안내사항
총 게시글 1,255 페이지 49/126
481
  • Lee, Ji-Hee
  • Journal of astronomy and space sciences
  • 28, n.2
  • pp.117-122
  • 2011
  • 원문 바로보기
In this paper, the anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically, we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field, and compare them in order to identify possible anisotropic features. For this study, we identify a total of 47 dipolarization events in February 2008 using the magnetic field data observed by the THEMIS A, D and E satellites when they are situated near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that the degree of anisotropy, as defined by the ratio of the spectral index of the perpendicular components to that of the parallel component, can range from ~0.2 to ~2.6, and there are more events associated with the ratio greater than unity (i.e., the perpendicular index being greater than the parallel index) than those which are anisotropic in the opposite sense. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic, to some non-negligible degree. We then discuss how this result differs from what the theory of homogeneous, anisotropic, magnetohydrodynamic turbulence would predict.
482
  • Lee, Yong-Sam
  • Journal of astronomy and space sciences
  • 28, n.2
  • pp.143-153
  • 2011
  • 원문 바로보기
The sundials produced in King Sejong era had the functions of accurate observation instruments and were fabricated in various forms such as Angbuilgu (hemispherical sundial). In this study, we investigated the literature, structural characteristics and principles of Hyeonjuilgu, Cheonpyeongilgu and Jeongnamilgu that were developed in Joseon to have the unique structures. Additionally, the sundials were reviewed in the perspective of technical history by comparing them with the sundials of China. For the restoration of the sundials, we identified the principle in which the light spots and shade of the sun were used, and drew the variations of the altitude and azimuth by the yearly motion of the sun on the Siban on the hemispheric and flat surfaces. Based on these results, we completed the design drawings of the three sundials and proposed the restoration models.
483
  • Park, Durk-Jong
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.299-304
  • 2011
  • 원문 바로보기
As more satellites are designed to downlink their observed image data through the X-band frequency band, it is inevitable that the occupied bandwidth of a target satellite will overlap with that of other X-band downlink satellites. For sun-synchronized low earth orbit satellites, in particular, it can be expected that two or more satellites be placed within the looking angle of a ground station antenna at the same time. Due to the overlapping in the frequency band, signals transmitted from the adjacent satellites act as interferers, leading to degraded link performance between target satellite and ground station. In this paper, link analysis was initiated by modeling the radiation pattern of ground station antenna through a validated Jet Propulsion Laboratory peak envelope model. From the relative antenna gain depending on the offset angle from center axis of maximum antenna directivity, the ratio of received interference signal level to the target signal level was calculated. As a result, it was found that the degradation increased when the offset angle was within the first point of radiation pattern. For a 7.3 m antenna, serious link degradation began at an offset angle of 0.4 degrees. From this analysis, the link performance of the coming satellite passes can be recognized, which is helpful to establish an operating procedure that will prevent the ground station from receiving corrupted image data in the event of a degraded link.
484
  • Rew, Dong-Young
  • Journal of astronomy and space sciences
  • 27, n.4
  • pp.377-382
  • 2010
  • 원문 바로보기
In lunar explorer development program, computer simulator is necessary to provide virtual environments that vehicle confronts in lunar transfer, orbit, and landing missions, and to analyze dynamic behavior of the spacecraft under these environments. Objective of simulation differs depending on its application in spacecraft development cycle. Scope of use cases considered in this paper includes simulation of software based, processor and/or hardware in the loop, and support of ground-based flight test of developed vehicle. These use cases represent early phase in development cycle but reusability of modeling results in the next design phase is considered in defining requirements. A simulator architecture in which simulator platform is located in the middle and modules for modeling, analyzing, and three dimensional visualizing are connected to that platform is suggested. Baseline concepts and requirements for simulator development are described. Result of trade study for selecting simulation platform and approaches of defining other simulator components are summarized. Finally, characters of lunar elevation map data which is necessary for lunar terrain generation is described.
485
  • Sohn, Dong-Hyo
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.231-238
  • 2010
  • 원문 바로보기
We analyzed global positioning system (GPS)-derived precipitable water vapor (PWV) trends of the Korea Astronomy and Space Science Institute 5 stations (Seoul, Daejeon, Mokpo, Milyang, Sokcho) where Korea Meteorological Administration meteorological data can be obtained at the same place. In the least squares analysis, the GPS PWV time series showed consistent positive trends (0.11 mm/year) over South Korea from 2000 to 2009. The annual increase of GPS PWV was comparable with the 0.17 mm/year and 0.02 mm/year from the National Center for Atmospheric Research Earth Observing Laboratory and Atmospheric InfraRed Sounder, respectively. For seasonal analysis, the increasing tendency was found by 0.05 mm/year, 0.16 mm/year, 0.04 mm/year in spring (March-May), summer (June-August) and winter (December-February), respectively. However, a negative trend (-0.14 mm/year) was seen in autumn (September-November). We examined the relationship between GPS PWV and temperature which is the one of the climatic elements. Two elements trends increased during the same period and the correlation coefficient was about 0.8. Also, we found the temperature rise has increased more GPS PWV and observed a stronger positive trend in summer than in winter. This is characterized by hot humid summer and cold dry winter of Korea climate and depending on the amount of water vapor the air contains at a certain temperature. In addition, it is assumed that GPS PWV positive trend is caused by increasing amount of saturated water vapor due to temperature rise in the Korean Peninsula. In the future, we plan to verify GPS PWV effectiveness as a tool to monitor changes in precipitable water through cause analysis of seasonal trends and indepth/long-term comparative analysis between GPS PWV and other climatic elements.
486
  • Lee, Chang-Hoon
  • Journal of astronomy and space sciences
  • 27, n.2
  • pp.145-152
  • 2010
  • 원문 바로보기
In this paper, we developed a local oscillator (LO) system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO) of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL) module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI) receiver and single dish radio astronomy receiver at the 3 mm frequency band.
487
  • Lee, Jae-Yoon
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.221-230
  • 2010
  • 원문 바로보기
A 4+12+16 amplitude phase shift keying (APSK) modulation outperforms other 32-APSK modulations in a nonlinear additive white Gaussian noise (AWGN) channel because of its intrinsic robustness against AM/AM and AM/PM distortions caused by the nonlinear characteristics of a high-power amplifier. Thus, this modulation scheme has been adopted in the digital video broadcasting-satellite2 European standard. And it has been considered for high rate transmission of telemetry data on deep space communications in consultative committee for space data systems which provides a forum for discussion of common problems in the development and operation of space data systems. In this paper, we present an improved bits-to-symbol mapping scheme with a better bit error rate for a 4+12+16 APSK signal in a nonlinear AWGN channel and propose a simple signal detection algorithm for the 4+12+16 APSK from the presented bit mapping.
488
  • Kim, Yong-Ha
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.181-188
  • 2010
  • 원문 바로보기
We have carried out all-sky imaging of OH Meinel, <TEX>$O_2$</TEX> atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea (<TEX>$36.2^{\circ}$</TEX> N, <TEX>$128.9^{\circ}$</TEX> E, Alt = 1,124 m). We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds) are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.
489
  • Park, Chang-Geun
  • Journal of astronomy and space sciences
  • 27, n.3
  • pp.213-220
  • 2010
  • 원문 바로보기
As an observation instrument of the longest record of tropospheric water vapor, radiosonde data provide upper-air pressure (geopotential height), temperature, humidity and wind. However, the data have some well-known elements related to inaccuracy. In this article, radiosonde precipitable water vapor (PWV) at Sokcho observatory was compared with global positioning system (GPS) PWV during each summertime of year 2007 and 2008 and the biases were calculated. As a result, the mean bias showed negative values regardless of the rainfall occurrence. In addition, on the basis of GPS PWV, the maximum root mean square error (RMSE) was 5.67 mm over the radiosonde PWV.
490
  • Lee, Chang-Moon
  • Journal of astronomy and space sciences
  • 27, n.2
  • pp.117-122
  • 2010
  • 원문 바로보기
An ionospheric error simulation is needed for creating precise Global Positioning System (GPS) signal using GPS simulator. In this paper we developed Klobuchar coefficients n <TEX>${\alpha}_n$</TEX> and <TEX>${\beta}_n$</TEX> (n = 1, 2, 3, 4) generation algorithms for simulator and verified accuracy of the algorithm. The algorithm extract those Klobuchar coefficients from broadcast (BRDC) messages provided by International GNSS Service during three years from 2006 through 2008 and curve-fit them with sinusoidal and linear functions or constant. The generated coefficients from our developed algorithms are referred to as MODL coefficients, while those coefficients from BRDC messages are named as BRDC coefficients. The maximum correlation coefficient between MODL and BRDC coefficients was found for <TEX>${\alpha}_2$</TEX> and the value was 0.94. On the other hand, the minimum correlation was 0.64 for the case of <TEX>${\alpha}_1$</TEX>. We estimated vertical total electron content using the Klobuchar model with MODL coefficients, and compared the result with those from the BRDC model and global ionosphere maps. As a result, the maximum RMS was 3.92 and 7.90 TECU, respectively.