본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,255 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,255건 (DB Construction : 1,255 Articles)
안내사항
총 게시글 1,255 페이지 48/126
471
  • Chung, Jong-Kyun
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.305-310
  • 2011
  • 원문 바로보기
The total electron content (TEC) using global positioning system (GPS) is analyzed to see the characteristics of ionosphere over King Sejong station (KSJ, geographic latitude <TEX>$62^{\circ}13'S$</TEX>, longitude <TEX>$58^{\circ}47'W$</TEX>, corrected geomagnetic latitude <TEX>$48^{\circ}S$</TEX>) in Antarctic. The GPS operational ratio during the observational period between 2005 and 2009 is 90.1%. The annual variation of the daily mean TEC decreases from January 2005 to February 2009, but increase from the June 2009. In summer (December-February), the seasonal mean TEC values have the maximum of 26.2 <TEX>${\pm}$</TEX> 2.4 TEC unit (TECU) in 2005 and the minimum of 16.5 <TEX>${\pm}$</TEX> 2.8 TECU in 2009, and the annual differences decrease from 3.0 TECU (2005-2006) to 1.4 TECU (2008-2009). However, on November 2010, it significantly increases to 22.3 <TEX>${\pm}$</TEX> 2.8 TECU which is up to 5.8 TECU compared with 2009 in summer. In winter (June-August), the seasonal mean TEC slightly decreases from 13.7 <TEX>${\pm}$</TEX> 4.5 TECU in 2005 to 8.9 <TEX>${\pm}$</TEX> 0.6 TECU in 2008, and the annual difference is constantly about 1.6 TECU, and increases to 10.3 <TEX>${\pm}$</TEX> 1.8 TECU in 2009. The annual variations of diurnal amplitude show the seasonal features that are scattered in summer and the enhancements near equinoxes are apparent in the whole years. In contrast, the semidiurnal amplitudes show the disturbed annual peaks in winter and its enhancements near equinoxes are unapparent. The diurnal phases are not constant in winter and show near 12 local time (LT). The semidiurnal phases have a seasonal pattern between 00 LT and 06 LT. Consequently, the KSJ GPS TEC variations show the significant semidiurnal variation in summer from December to February under the solar minimum between 2005 and 2009. The feature is considered as the Weddell Sea anomaly of larger nighttime electron density than a daytime electron density that has been observed around the Antarctica peninsula.
472
  • Yu, Ji-Woong
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.273-284
  • 2011
  • 원문 바로보기
A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.
473
  • Kim, Chun-Hwey
  • Journal of astronomy and space sciences
  • 28, n.2
  • pp.109-116
  • 2011
  • 원문 바로보기
The first presented BV light curves of BH UMa confirmed Krajci's (2005) result that BH UMa is an RR Lyr star that belongs to the RRc subgroup. The light curves showed a slight asymmetry of D = 0.453 with an amplitude of about <TEX>$0.^m58$</TEX> in B, <TEX>$0.^m47$</TEX> in V, and <TEX>$0.^m11$</TEX> in B-V and with a small hump between <TEX>$0.^p82$</TEX> and <TEX>$0.^p86$</TEX>. We determined nine new times of minimum light and eight times of maximum light. We also analyzed all of the available unanalyzed minimum timings and found for the first time that the period of BH UMa has varied dramatically in at least three independent sinusoidal ways superposed on a secularly downward parabola over 66 years. The secular period decreasing rate was obtained as <TEX>$6.^d684{\times}10^{-8}y^{-1}$</TEX>, corresponding to -0.58 s/century. The semi-amplitude and period for each of the three sinusoidal variations were (<TEX>$0.^d058$</TEX>, <TEX>$14.^y44$</TEX>), (<TEX>$0.^d044$</TEX>, <TEX>$9.^y98$</TEX>), and (<TEX>$0.^d005$</TEX>, <TEX>$0.^y97$</TEX>), respectively. It is uncertain whether the periodicity for the shortest period of <TEX>$0.^y97$</TEX> is real or spurious. The secular period decrease, well consistent with those of the other RRc stars, could be considered as a natural result of the evolution of the BH UMa system. The two possible sinusoidal terms were interpreted as both two light-time effects due to two additional bodies orbiting BH UMa and combinations of random fluctuations in the pulsation period of BH UMa. Two interpretations were shortly discussed with related parameters.
474
  • Jo, Jung-Hyun
  • Journal of astronomy and space sciences
  • 28, n.1
  • pp.37-54
  • 2011
  • 원문 바로보기
Two semi-analytic solutions for a perturbed two-body problem known as Lagrange planetary equations (LPE) were compared to a numerical integration of the equation of motion with same perturbation force. To avoid the critical conditions inherited from the configuration of LPE, non-singular orbital elements (EOE) had been introduced. In this study, two types of orbital elements, classical Keplerian orbital elements (COE) and EOE were used for the solution of the LPE. The effectiveness of EOE and the discrepancy between EOE and COE were investigated by using several near critical conditions. The near one revolution, one day, and seven days evolutions of each orbital element described in LPE with COE and EOE were analyzed by comparing it with the directly converted orbital elements from the numerically integrated state vector in Cartesian coordinate. As a result, LPE with EOE has an advantage in long term calculation over LPE with COE in case of relatively small eccentricity.
475
  • Won, Ji-Hye
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.291-298
  • 2011
  • 원문 바로보기
The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/<TEX>$m^2$</TEX> and 4.3 kg/<TEX>$m^2$</TEX> for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.
476
  • Choi, Jong-Yeoun
  • Journal of astronomy and space sciences
  • 28, n.1
  • pp.63-70
  • 2011
  • 원문 바로보기
The needs for satellite formation flying are gradually increasing to perform the advanced space missions in remote sensing and observation of the space or Earth. Formation flying in low Earth orbit can perform the scientific missions that cannot be realized with a single spacecraft. One of the various techniques of satellite formation flying is the determination of the precise baselines between the satellites within the formation, which has to be in company with the precision validation. In this paper, the baseline of Gravity Recovery and Climate Experiment (GRACE) A and B was determined with the real global positioning system (GPS) measurements of GRACE satellites. And baseline precision was validated with the batch and sequential processing methods using K/Ka-band ranging system (KBR) biased range measurements. Because the proposed sequential method validate the baseline precision, removing the KBR bias with the epoch difference instead of its estimation, the validating data (KBR biased range) are independent of the data validated (GPS-baseline) and this method can be applied to the real-time precision validation. The result of sequential precision validation was 1.5~3.0 mm which is similar to the batch precision validation.
477
  • Park, Sang-Wook
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.345-354
  • 2011
  • 원문 바로보기
Earth acquisition is to solve when earth can be visible from satellite after Sun acquisition during launch and early operation period or on-station satellite anomaly. In this paper, the algorithm and test result of the Communication, Ocean and Meteorological Satellite (COMS) Earth acquisition are presented in case of on-station satellite anomaly status. The algorithms for the calculation of Earth-pointing attitude control parameters including those attitude direction vector, rotation matrix, and maneuver time and duration are based on COMS configuration (Eurostar 3000 bus). The coordinate system uses the reference initial frame. The constraint calculating available time-slot to perform the earth acquisition considers eclipse, angular separation, solar local time, and infra-red earth sensor blinding conditions. The results of Electronics and Telecommunications Research Institute (ETRI) are compared with that of the Astrium software to validate the implemented ETRI software.
478
  • Yoo, Sung-Moon
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.285-290
  • 2011
  • 원문 바로보기
This paper presents an algorithm that can provide initial conditions for formation flying at the beginning of a region of interest to maximize scientific mission goals in the case of a tetrahedral satellite formation. The performance measure is to maximize the quality factor that affects scientific measurement performance. Several path constraints and periodicity conditions at the beginning of the region of interest are identified. The optimization problem is solved numerically using a direct transcription method. Our numerical results indicate that there exist an optimal configuration and states of a tetrahedral satellite formation. Furthermore, the initial states and algorithm presented here may be used for reconfiguration maneuvers and fuel balancing problems.
479
  • Roh, Kyoung-Min
  • Journal of astronomy and space sciences
  • 28, n.3
  • pp.193-201
  • 2011
  • 원문 바로보기
A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.
480
  • Hwang, Jun-Ga
  • Journal of astronomy and space sciences
  • 28, n.3
  • pp.173-181
  • 2011
  • 원문 바로보기
Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.