본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,249 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,249건 (DB Construction : 1,249 Articles)
안내사항
총 게시글 1,249 페이지 48/125
471
  • Moon, Ga-Hee
  • Journal of astronomy and space sciences
  • 28, n.2
  • pp.123-132
  • 2011
  • 원문 바로보기
It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF <TEX>$B_y$</TEX> and <TEX>$B_z$</TEX> components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of <TEX>$B_z$</TEX> < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF <TEX>$B_z$</TEX> (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the <TEX>$B_z$</TEX> < 0 condition. It is found that the correlation is highest between the time-integrated IMF <TEX>$B_z$</TEX> and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated <TEX>$B_z$</TEX> and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from <TEX>$B_z$</TEX> minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of <TEX>${\mid}Dst_{min}{\mid}$</TEX> and <TEX>${\mid}B_{zmin}{\mid}$</TEX> for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.
472
  • Koo, Cheol-Hea
  • Journal of astronomy and space sciences
  • 28, n.3
  • pp.241-252
  • 2011
  • 원문 바로보기
A simulated network protocol provides the capability of distributed simulation to a generic simulator. Through this, full coverage of management of data and service handling among separated simulators is achieved. The distributed simulation environment is much more conducive to handling simulation load balancing and hazard treatment than a standalone computer. According to the simulated network protocol, one simulator takes on the role of server and the other simulators take on the role of client, and client is controlled by server. The purpose of the simulated network protocol is to seamlessly connect multiple simulator instances into a single simulation environment. This paper presents the development of a simulated network (simNetwork) that provides the capability of distributed simulation to a generic simulator (GenSim), which is a software simulator of satellites that has been developed by the Korea Aerospace Research Institute since 2010, to use as a flight software validation bench for future satellite development.
473
  • Suh, Kyung-Won
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.253-260
  • 2011
  • 원문 바로보기
To reproduce the multiple broad peaks and the fine spectral features in the spectral energy distributions (SEDs) of T Tauri stars, we model dust around T Tauri stars using a radiative transfer model for multiple isothermal circumstellar dust shells. We calculate the radiative transfer model SEDs for multiple dust shells using the opacity functions for various dust grains at different temperatures. For six sample stars, we compare the model results with the observed SEDs including the Spitzer spectral data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around classical T Tauri stars. We find that at least three separate dust components are required to reproduce the observed SEDs. For all the sample stars, an innermost hot (250-550 K) dust component of amorphous (silicate and carbon) and crystalline (corundum for all objects and forsterite for some objects) grains is needed. Crystalline forsterite grains can reproduce many fine spectral features of the sample stars. We find that crystalline forsterite grains exist in cold regions (80-100 K) as well as in hot inner shells.
474
  • Hwang, Jun-Ga
  • Journal of astronomy and space sciences
  • 28, n.3
  • pp.173-181
  • 2011
  • 원문 바로보기
Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.
475
  • Park, Sang-Wook
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.345-354
  • 2011
  • 원문 바로보기
Earth acquisition is to solve when earth can be visible from satellite after Sun acquisition during launch and early operation period or on-station satellite anomaly. In this paper, the algorithm and test result of the Communication, Ocean and Meteorological Satellite (COMS) Earth acquisition are presented in case of on-station satellite anomaly status. The algorithms for the calculation of Earth-pointing attitude control parameters including those attitude direction vector, rotation matrix, and maneuver time and duration are based on COMS configuration (Eurostar 3000 bus). The coordinate system uses the reference initial frame. The constraint calculating available time-slot to perform the earth acquisition considers eclipse, angular separation, solar local time, and infra-red earth sensor blinding conditions. The results of Electronics and Telecommunications Research Institute (ETRI) are compared with that of the Astrium software to validate the implemented ETRI software.
476
  • Roh, Kyoung-Min
  • Journal of astronomy and space sciences
  • 28, n.3
  • pp.193-201
  • 2011
  • 원문 바로보기
A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.
477
  • Yoo, Sung-Moon
  • Journal of astronomy and space sciences
  • 28, n.4
  • pp.285-290
  • 2011
  • 원문 바로보기
This paper presents an algorithm that can provide initial conditions for formation flying at the beginning of a region of interest to maximize scientific mission goals in the case of a tetrahedral satellite formation. The performance measure is to maximize the quality factor that affects scientific measurement performance. Several path constraints and periodicity conditions at the beginning of the region of interest are identified. The optimization problem is solved numerically using a direct transcription method. Our numerical results indicate that there exist an optimal configuration and states of a tetrahedral satellite formation. Furthermore, the initial states and algorithm presented here may be used for reconfiguration maneuvers and fuel balancing problems.
478
  • Chang, Heon-Young
  • 韓國宇宙科學會誌 = Journal of astronomy & space sciences
  • 27, n.1
  • pp.1-10
  • 2010
  • 원문 바로보기
The distance distribution in our planetary system has been a controversial matter. Two kinds of important issues on Titius-Bode's relation have been discussed up to now: one is if there is a simple mathematical relation between distances of natural bodies orbiting a central body, and the other is if there is any physical basis for such a relation. We have examined, by applying it to exo-planetary systems, whether Titius-Bode's relation is exclusively applicable to our solar system. We study, with the <TEX>$X^2$</TEX> test, the distribution of period ratios of two planets in multiple planet systems by comparing it with that derived from not only Titius-Bode's relation but also other forms of it. The <TEX>$X^2$</TEX> value between the distribution of the orbital period derived from Titius-Bode's relation and that observed in our Solar system is 12.28 (dof=18) with high probability, i.e., 83.3 %. The value of <TEX>$X^2$</TEX> and probability resulted from Titius-Bode's relation and observed exo-planetary systems are 21.38 (dof=26) and 72.2 %, respectively. Modified forms we adopted seem also to agree with the planetary system as favorably as Titius-Bode's relation does. As a result, one cannot rule out the possibility that the distribution of the ratio of orbiting periods in multiple planet systems is consistent with that derived from Titius-Bode's relation. Having speculated Titius-Bode's relation could be valid in exo-planetary systems, we tentatively conclude it is unlikely that Titius-Bode's relation explains the distance distribution in our planetary system due to chance. Finally, we point out implications of our finding.
479
  • Lee, Woo-Ju
  • 韓國宇宙科學會誌 = Journal of astronomy & space sciences
  • 27, n.1
  • pp.11-20
  • 2010
  • 원문 바로보기
This paper designs a data link between a Lunar Orbiter (LO) and an Earth Station (ES), and analyzes the downlink performance of a space communications system for lunar exploration, conforming to the recommendations by the Consultative Committee for Space Data Systems (CCSDS). The results provided in the paper can be useful references for the design of reliable communication link for the Korean lunar exploration in the near future.
480
  • Jeong, Jang-Hae
  • Journal of astronomy and space sciences
  • 27, n.2
  • pp.81-88
  • 2010
  • 원문 바로보기
A total of 583 observations (193 in <TEX>${\Delta}b$</TEX>, 190 in <TEX>${\Delta}v$</TEX>, 200 in <TEX>${\Delta}r$</TEX>) for V523 Cas was made on 9 nights from September to December in 2008 using the 100 cm telescope with 2K CCD camera of the Chungbuk National University Observatory. With our data BVR light curves were constructed and 9 times of minimum light were determined. We also obtained physical parameters of the V523 Cas system by analysis of the BVR light curves using the Wilson-Devinney code.