본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,252 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,252건 (DB Construction : 1,252 Articles)
안내사항
총 게시글 1,252 페이지 35/126
341
  • Eom, We-Sub
  • Journal of astronomy and space sciences
  • 31, n.4
  • pp.347-351
  • 2014
  • 원문 바로보기
Planetary exploration rovers are likely to make a trip on a winding and sloping road of irregular surfaces to the destination in order to accomplish scientific missions. One of the key technologies for rovers is a suspension for traveling and performing exploration missions; the suspension is an essential area of technology for a stable movement of a rover. In this study, an 8-wheel suspension is designed to enable efficient climbing of slopes on a passage to the destination. For the two front wheels among the eight wheels, the moment at the pivot connecting two wheels is derived when the distance between the wheels and the torque of wheels are same. A test experiment was performed to compare the magnitude of moment according to the change in tilt angle and the position of the pivot. Finally, a suspension design considering the position of the pivot was proposed to enhance the hill-climbing performance.
342
  • Lee, Junhyun
  • Journal of astronomy and space sciences
  • 31, n.4
  • pp.311-315
  • 2014
  • 원문 바로보기
In this study, we investigated the effect of space plasmas on the floating potential variation of a low-altitude, polar-orbiting satellite using the Langmuir Probe (LP) measurement onboard the STSAT-1 spacecraft. We focused on small potential drops, for which the estimation of plasma density and temperature from LP is available. The floating potential varied according to the variations of plasma density and temperature, similar to the previously reported observations. Most of the potential drops occurred around the nightside auroral region. However, unlike the previous studies where large potential drops were observed with the precipitation of auroral electrons, the potential drops occurred before or after the precipitation of auroral electrons. Statistical analysis shows that the potential drops have good correlation with the temperature increase of cold electrons, which suggests the small potential drops be mainly controlled by the cold ionospheric plasmas.
343
  • Kwak, Younghee
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.315-320
  • 2013
  • 원문 바로보기
Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of <TEX>$13.8^{\circ}$</TEX> (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of <TEX>$3.7^{\circ}$</TEX> (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of <TEX>$10.3^{\circ}$</TEX> (2.9%).
344
  • Jun, Chae-Woo
  • Journal of astronomy and space sciences
  • 30, n.1
  • pp.25-32
  • 2013
  • 원문 바로보기
We statistically investigated the properties of low-latitude Pi2 pulsations using Bohyun (BOH, Mlat = <TEX>$29.8^{\circ}$</TEX>, L = 1.35) ground magnetometer data in 2008. For this 1-year interval, 582 Pi2 events were identified when BOH was in the nightside from 1800 to 0600 local times. We found the following Pi2 characteristics. (1) The occurrence distribution of Pi2s is relatively constant in local times. (2) The Pi2 frequency varies in local times. That is, Pi2 pulsations in postmidnight sector had higher frequency than in premidnight sector. (3) Pi2 power in premidnight sector is stronger than in postmidnight sector. (4) Pi2 frequency has positive correlation with solar wind speed and AE index. (5) Pi2 power has not a clear correlation with solar wind parameters. This indicates that Pi2 power is not controlled by external sources. (6) It is found that the most probable-time between Pi2 onsets is <TEX>${\Delta}t$</TEX> ~ 37.5 min: This is interpreted to be the period between Pi2 pulsations when they occur cyclically. We suggest that <TEX>${\Delta}t$</TEX> ~ 37.5 min is the occurrence rate of reconnection of open field lines in the tail lobe.
345
  • Seo, Kyoung-Ae
  • Journal of astronomy and space sciences
  • 30, n.2
  • pp.87-90
  • 2013
  • 원문 바로보기
We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and <TEX>$N_H{\sim}2.85{\times}10^{22}\;cm^{-2}$</TEX> respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.
346
  • Oh, Suyeon
  • Journal of astronomy and space sciences
  • 30, n.3
  • pp.175-178
  • 2013
  • 원문 바로보기
Recently, two instruments of cosmic ray are operating in South Korea. One is Seoul muon detector after October 1999 and the other is Daejeon neutron monitor (Kang et al. 2012) after October 2011. The former consists of four small plastic scintillators and the latter is the standard 18 NM 64 type. In this report, we introduce the characteristics of both instruments. We also analyze the flux variations of cosmic ray such as diurnal variation and Forbush decrease. As the result, the muon flux shows the typical seasonal and diurnal variations. The neutron flux also shows the diurnal variation. The phase which shows the maximum flux in the diurnal variation is around 13-14 local time. We found a Forbush decrease on 7 March 2012 by both instruments. It is also identified by Nagoya multi-direction muon telescope and Oulu neutron monitor. The observation of cosmic ray at Jangbogo station as well as in Korean peninsula can support the important information on space weather in local area. It can also enhance the status of Korea in the international community of cosmic ray experiments.
347
  • Oh, Eunsong
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.321-326
  • 2013
  • 원문 바로보기
The modulation transfer function (MTF) is a widely used indicator in assessments of remote-sensing image quality. This MTF method is also used to restore information to a standard value to compensate for image degradation caused by atmospheric or satellite jitter effects. In this study, we evaluated MTF values as an image quality indicator for the Geostationary Ocean Color Imager (GOCI). GOCI was launched in 2010 to monitor the ocean and coastal areas of the Korean peninsula. We evaluated in-orbit MTF value based on the GOCI image having a 500-m spatial resolution in the first time. The pulse method was selected to estimate a point spread function (PSF) with an optimal natural target such as a Seamangeum Seawall. Finally, image restoration was performed with a Wiener filter (WF) to calculate the PSF value required for the optimal regularization parameter. After application of the WF to the target image, MTF value is improved 35.06%, and the compensated image shows more sharpness comparing with the original image.
348
  • Ko, Kyeongyeon
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.307-314
  • 2013
  • 원문 바로보기
Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of <TEX>$0.014{\pm}0.007{\lambda}$</TEX> rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below <TEX>${\lambda}/70$</TEX> rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.
349
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.255-267
  • 2013
  • 원문 바로보기
In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter's Line of Sight (LOS) conditions (weather orbiter is located at near or far side of the Moon seen from the Earth) are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs) are assumed to be Korea's future Near Earth Networks (NENs) to support lunar missions, and world-wide separated Deep Space Networks (DSNs) are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea's future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea's lunar orbiter missions.
350
  • Wu, Jason Hung Kit
  • Journal of astronomy and space sciences
  • 30, n.2
  • pp.83-85
  • 2013
  • 원문 바로보기
Anomalous X-ray pulsars (AXPs) are thought to be magnetars which are young isolated neutron stars with extremely strong magnetic fields of > <TEX>$10^{14}$</TEX> Gauss. Their tremendous magnetic fields inferred from the spin parameters provide a huge energy reservoir to power the observed X-ray emission. High-energy emission above 0.3 MeV has never been detected despite intensive search. Here, we present the possible Fermi Large Area Telescope (LAT) detection of <TEX>${\gamma}$</TEX>-ray pulsations above 200 MeV from the AXP, 1E 2259+586, which puts the current theoretical models of <TEX>${\gamma}$</TEX>-ray emission mechanisms of magnetars into challenge. We speculate that the high-energy <TEX>${\gamma}$</TEX>-rays originate from the outer magnetosphere of the magnetar.