본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,253 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,253건 (DB Construction : 1,253 Articles)
안내사항
총 게시글 1,253 페이지 32/126
311
  • Moon, Ga-Hee
  • Journal of astronomy and space sciences
  • 31, n.4
  • pp.325-333
  • 2014
  • 원문 바로보기
We are motivated by both the accumulating evidence for the connection of solar variability to the chemistry of nitrogen oxide in the atmosphere and recent finding that the Galactic cosmic-ray (GCR) influx is associated with the solar north-south asymmetry. We have analyzed the measured pH in precipitation over the 109 stations distributed in the United States. We have found that data of pH in precipitation as a whole appear to be marginally anti-correlated with the solar asymmetry. That is, rain seems to become less acidic when the southern hemisphere of the Sun is more active. The acidity of rain is also found to be correlated with the atmospheric temperature, while not to be correlated with solar activity itself. We have carried on the analysis with two subsamples in which stations located in the east and in the west. We find that the pH data derived from the eastern stations which are possibly polluted by sulfur oxides and nitrogen oxides are not correlated with the solar asymmetry, but with the temperature. On the contrary, the pH data obtained from the western stations are found to be marginally anti-correlated with the solar asymmetry. In addition, the pH data obtained from the western stations are found to be correlated with the solar UV radiation. We conclude by briefly pointing out that a role of the solar asymmetry in the process of acidification of rain is to be further examined particularly when the level of pollution by sulfur oxides and nitrogen oxides is low.
312
  • Kim, Jung-Hee
  • Journal of astronomy and space sciences
  • 31, n.2
  • pp.149-157
  • 2014
  • 원문 바로보기
As the prediction of geomagnetic storms is becoming an important and practical problem, conditions in the Earth's magnetosphere have been studied rigorously in terms of those in the interplanetary space. Another approach to space weather forecast is to deal with it as a probabilistic geomagnetic storm forecasting problem. In this study, we carry out detailed statistical analysis of solar wind parameters and geomagnetic indices examining the dependence of the distribution on the solar cycle and annual variations. Our main findings are as follows: (1) The distribution of parameters obtained via the superimposed epoch method follows the Gaussian distribution. (2) When solar activity is at its maximum the mean value of the distribution is shifted to the direction indicating the intense environment. Furthermore, the width of the distribution becomes wider at its maximum than at its minimum so that more extreme case can be expected. (3) The distribution of some certain heliospheric parameters is less sensitive to the phase of the solar cycle and annual variations. (4) The distribution of the eastward component of the interplanetary electric field BV and the solar wind driving function BV2, however, appears to be all dependent on the solar maximum/minimum, the descending/ascending phases of the solar cycle and the equinoxes/solstices. (5) The distribution of the AE index and the Dst index shares statistical features closely with BV and <TEX>$BV^2$</TEX> compared with other heliospheric parameters. In this sense, BV and <TEX>$BV^2$</TEX> are more robust proxies of the geomagnetic storm. We conclude by pointing out that our results allow us to step forward in providing the occurrence probability of geomagnetic storms for space weather and physical modeling.
313
  • Kim, Young-Soo
  • Journal of astronomy and space sciences
  • 31, n.4
  • pp.341-346
  • 2014
  • 원문 바로보기
A prototype of the GMT FSM has been developed to acquire and to enhance the key technology - mirror fabrication and tip-tilt actuation. The ellipsoidal off-axis mirror has been designed, analyzed, and fabricated from light-weighting to grinding, polishing, and figuring of the mirror surface. The mirror was tested by using an interferometer together with CGHs, which revealed the surface error of 13.7 nm rms in the diameter of 1030 mm. The SCOTS test was employed to independently validate the test results. It measured the surface error to be 17.4 nm rms in the diameter of 1010 mm. Both tests show the optical surface of the FSMP mirror within the required value of 20 nm rms surface error.
314
  • Kim, Jung-Hee
  • Journal of astronomy and space sciences
  • 31, n.1
  • pp.7-13
  • 2014
  • 원문 바로보기
Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth's neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets' wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE) spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index) are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth's neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.
315
  • Hui, Chung-Yue
  • Journal of astronomy and space sciences
  • 31, n.2
  • pp.101-120
  • 2014
  • 원문 바로보기
The nature of the exotic stellar corpses which reincarnate by consuming their companion is reviewed. Apart from sucking life from their partners, they are actually eating the doomed companions away by their deadly and powerful particle/radiation beams. Such situation resembles that a female 'black widow' spider that eats its mate after mating. These celestial zombies are called - Millisecond pulsars (MSPs). In this review article, I will focus on the effort of Fermi Asian Network (FAN) in exploring these intricating objects over the last five years. Two special classes of MSPs are particularly striking. Since Fermi Gamma-ray Space Telescope has started surveying the gamma-ray sky, the population of 'black widows' has been boosted. Another dramatic class is so-called 'redbacks' (Australian cousin of 'black widows') which has just emerged in the last few years. These MSPs provide us with a long-sought missing link in understanding the transition between accretion-powered and rotation-powered systems. The strategy of hunting MSPs through mulitwavelength observations of the unidentified Fermi objects is also reviewed.
316
  • Hwang, Junga
  • Journal of astronomy and space sciences
  • 31, n.1
  • pp.25-31
  • 2014
  • 원문 바로보기
There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O'Neill 2010.
317
  • Seo, Yoon Kyung
  • Journal of astronomy and space sciences
  • 31, n.3
  • pp.265-276
  • 2014
  • 원문 바로보기
The application of software engineering is not common in the development of astronomical observation system. While there were component-wise developments in the past, large-scale comprehensive system developments are more common in these days. In this study, current methodologies of development are reviewed to select a proper one for the development of astronomical observation system and the result of the application is presented. As the subject of this study, a project of operation software development for an astronomical observation system which runs on the ground is selected. And the output management technique based on Component Based Development which is one of the relatively recent methodologies has been applied. Since the nature of the system requires lots of arithmetic algorithms and it has great impact on the overall performance of the entire system, a prototype model is developed to verify major functions and performance. Consequently, it was possible to verify the compliance with the product requirements through the requirement tracing table and also it was possible to keep to the schedule. Besides, it was suggested that a few improvements could be possible based on the experience of the application of conventional output management technique. This study is the first application of the software development methodology in the domestic astronomical observation system area. The process and results of this study would contribute to the investigation for a more appropriate methodology in the area of similar system development.
318
  • Rahoma, W.A
  • Journal of astronomy and space sciences
  • 31, n.3
  • pp.199-204
  • 2014
  • 원문 바로보기
This paper intends to highlight the effect of the third-body in an inclined orbit on a spacecraft orbiting the primary mass. To achieve this goal, a new origin of coordinate is introduced in the primary and the X-axis toward the node of the spacecraft. The disturbing function is expanded up to the second order using Legendre polynomials. A double-averaged analytical model is exploited to produce the evolutions of mean orbital elements as smooth curves.
319
  • Shin, Goo-Hwan
  • Journal of astronomy and space sciences
  • 31, n.3
  • pp.235-240
  • 2014
  • 원문 바로보기
The communications link in a space program is a crucial point for upgrading its performance by handling data between spacecraft bus and payloads, because spacecraft's missions are related to the data handling mechanism using communications ports such as a controlled area network bus (CAN Bus) and a universal asynchronous receiver and transmitter (UART). The NEXTSat-1 has a lot of communications ports for performing science and technology missions. However, the top level system requirements for the NEXTSat-1 are mass and volume limitations. Normally, the communications for units shall be conducted by using point to point link which require more mass and volume to interconnect. Thus, our approach for the novel communications link in the NEXTSat-1 program is to use CAN and serializer and deserializer low voltage differential signal (SerDesLVDS) to meet the system requirements of mass and volume. The CAN Bus and SerDesLVDS were confirmed by using already defined communications link for our missions in the NEXTSat-1 program and the analysis results were reported in this study in view of data flow and size analysis.
320
  • Oh, Suyeon
  • Journal of astronomy and space sciences
  • 31, n.2
  • pp.145-148
  • 2014
  • 원문 바로보기
There was a research on the prolongation of solar cycle 23 by the solar cyclic variation of solar, interplanetary geomagnetic parameters by Oh & Kim (2013). They also suggested that the sunspot number cannot typically explain the variation of total solar irradiance any more. Instead of the sunspot number, a new index is introduced to explain the degree of solar activity. We have analyzed the frequency of sunspot appearance, the length of solar cycle, and the rise time to a solar maximum as the characteristics of solar cycle. Then, we have examined the predictability of solar activity by the characteristics of preceding solar cycle. We have also investigated the hemispheric variation of flare index for the periods that the leading sunspot has the same magnetic polarity. As a result, it was found that there was a good correlation between the length of preceding solar cycle and spotless days. When the length of preceding solar cycle gets longer, the spotless days increase. It is also shown that the shorter rise time to a solar maximum is highly correlated with the increase of sunspots at a solar maximum. Therefore, the appearance frequency of spotless days and the length of solar cycle are more significant than the general sunspot number as an index of declining solar activity. Additionally, the activity of flares leads in the northern hemisphere and is stronger in the hemisphere with leading sunspots in positive polarity than in the hemisphere with leading sunspots in negative polarity. This result suggests that it is necessary to analyze the magnetic polarity's effect on the flares and to interpret the period from the solar maximum to solar maximum as the definition of solar cycle.