본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,255 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,255건 (DB Construction : 1,255 Articles)
안내사항
총 게시글 1,255 페이지 31/126
301
  • Mihn, Byeong-Hee
  • Journal of astronomy and space sciences
  • 32, n.1
  • pp.63-71
  • 2015
  • 원문 바로보기
During the reign of King Sejong (世宗, 1418-1450) in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋), Jin(金), and Yuan(元) dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak), and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺) based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree) like Honsang (a celestial globe). We also found that Hyeonju ilgu (a equatorial sundial) has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter). This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.
302
  • Roh, Dong-Goo
  • Journal of astronomy and space sciences
  • 32, n.4
  • pp.349-355
  • 2015
  • 원문 바로보기
As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.
303
  • Kim, Young-Rok
  • Journal of astronomy and space sciences
  • 32, n.3
  • pp.189-200
  • 2015
  • 원문 바로보기
In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.
304
  • Andronov, Ivan L.
  • Journal of astronomy and space sciences
  • 32, n.2
  • pp.127-136
  • 2015
  • 원문 바로보기
We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E. For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method 'NAV' ('New Algol Variable') using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination <TEX>$i=90^{\circ}$</TEX>, <TEX>$M_1=0.745M_{\odot}$</TEX>, <TEX>$M_2=0.854M_{\odot}$</TEX>, <TEX>$M=M_1+M_2=1.599M_{\odot}$</TEX>, the orbital separation <TEX>$a=1.65{\cdot}10^9m=2.37R_{\odot}$</TEX> and relative radii <TEX>$r_1=R_1/a=0.314$</TEX> and <TEX>$r_2=R_2/a=0.360$</TEX>. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions
305
  • Hwangbo, Jung-Eun
  • Journal of astronomy and space sciences
  • 32, n.1
  • pp.91-99
  • 2015
  • 원문 바로보기
The Korean Solar Radio Burst Locator (KSRBL) is a solar radio spectrograph observing the broad frequency range from 0.245 to 18 GHz with the capability of locating wideband gyrosynchrotron bursts. Due to the characteristics of a spiral feed, the beam center varies in a spiral pattern with frequency, making a modulation pattern over the wideband spectrum. After a calibration process, we obtained dynamic spectra consistent with the Nobeyama Radio Polarimeter (NoRP). We compared and analyzed the locations of bursts observed by KSRBL with results from the Nobeyama Radioheliograph (NoRH) and Atmospheric Imaging Assembly (AIA). As a result, we found that the KSRBL provides the ability to locate flaring sources on the Sun within around 2'.
306
  • Choi, Man-Soo
  • Journal of astronomy and space sciences
  • 31, n.3
  • pp.225-233
  • 2014
  • 원문 바로보기
The first Korean satellite laser ranging (SLR) system, Daedeok SLR station (DAEK station) was developed by Korea Astronomy and Space Science Institute (KASI) in 2012, whose main objectives are space geodesy researches. In consequence, Korea became the <TEX>$25^{th}$</TEX> country that operates SLR system supplementing the international laser tracking network. The DAEK station is designed to be capable of 2 kHz laser ranging with precision of a few mm both in daytime and nighttime observation of satellites with laser retro-reflector array (LRA) up to the altitude of 25,000 km. In this study, characteristics and specifications of DAEK station are investigated and its data quality is evaluated and compared with International Laser Ranging Service (ILRS) stations in terms of single-shot ranging precision. The analysis results demonstrated that the DAEK station shows good ranging performance to a few mm precision. Currently, the DAEK station is under normal operations at KASI headquarters, however, it will be moved to Sejong city in 2014 to function as a fundamental station for space geodesy researches in combination with other space geodesy systems (GNSS, VLBI, DORIS, etc.).
307
  • Kwak, Young-Sil
  • Journal of astronomy and space sciences
  • 31, n.1
  • pp.15-23
  • 2014
  • 원문 바로보기
We present preliminary observations of the field-aligned-irregularities (FAIs) in the E and F regions during the solar minimum (2009 - 2010) using the 40.8 MHz coherent backscatter radar at Daejeon (<TEX>$36.18^{\circ}N$</TEX>, <TEX>$127.14^{\circ}E$</TEX>, <TEX>$26.7^{\circ}N$</TEX> dip latitude) in South Korea. The radar, which consists of 24 Yagi antennas, observes the FAIs using a single beam with a peak power of 24 kW. The radar has been continuously operated since December 2009. Depending on the manner of occurrence of the backscatter echoes, the E-region echoes are largely divided into two types: quasi-periodic (QP) and continuous echoes. Our observations show that the QP echoes occur frequently above an altitude of 105 km in the post-sunset period and continuous echoes occur preferentially around an altitude of 105 km in the post-sunrise period. QP echoes appear as striated discrete echoes for a period of about 10 - 20 min. The QP-type echoes occur more frequently than the continuous-type echoes do and the echo intensity of the QP type is stronger than that of the continuous type. In the F region, the FAIs occur at night at an altitude interval of 250 - 450 km. As time proceeds, the occurrence height of the FAIs gradually increases until early in the morning and then decreases. The duration of the F-region FAIs is typically a few hours at night, although, in rare cases, FAIs persist throughout the night or appear even after sunrise. We discuss the similarities and differences of the FAIs observed by the Daejeon radar in comparison with other radar observations.
308
  • Roh, Kyoung-Min
  • Journal of astronomy and space sciences
  • 31, n.1
  • pp.41-50
  • 2014
  • 원문 바로보기
The Earth is not perfectly spherical and its rotational axis is not fixed in space, and these geophysical and kinematic irregularities work as dominant perturbations in satellite orbit propagation. The International Earth Rotation Service (IERS) provides the Conventions as guidelines for using the Earth's model and the reference time and coordinate systems defined by the International Astronomical Union (IAU). These guidelines are directly applied to model orbital dynamics of Earth satellites. In the present work, the effects of the latest conventions released in 2010 on orbit propagation are investigated by comparison with cases of applying the previous guidelines, IERS Conventions (2003). All seven major updates are tested, i.e., for the models of the precession/nutation, the geopotential, the ocean tides, the ocean pole tides, the free core nutation, the polar motion, and the solar system ephemeris. The resultant position differences for one week of orbit propagation range from tens of meters for the geopotential model change from EGM96 to EGM2008 to a few mm for the precession/nutation model change from IAU2000 to IAU2006. The along-track differences vary secularly while the cross-track components show periodic variation. However, the radial-track position differences are very small compared with the other components in all cases. These phenomena reflect the variation of the ascending node and the argument of latitude. The reason is that the changed models tested in the current study can be regarded as small fluctuations of the geopotential model from the point of view of orbital dynamics. The ascending node and the argument of latitude are more sensitive to the geopotential than the other elements. This study contributes to understanding of the relation between the Earth's geophysical properties and orbital motion of satellites as well as satellite-based observations.
309
  • Wilson, R.E.
  • Journal of astronomy and space sciences
  • 31, n.2
  • pp.121-130
  • 2014
  • 원문 바로보기
Essential ideas, successes, and difficulties of Areal Density Analysis (ADA) for color-magnitude diagrams (CMD's) of resolved stellar populations are examined, with explanation of various algorithms and strategies for optimal performance. A CMD-generation program computes theoretical datasets with simulated observational error and a solution program inverts the problem by the method of Differential Corrections (DC) so as to compute parameter values from observed magnitudes and colors, with standard error estimates and correlation coefficients. ADA promises not only impersonal results, but also significant saving of labor, especially where a given dataset is analyzed with several evolution models. Observational errors and multiple star systems, along with various single star characteristics and phenomena, are modeled directly via the Functional Statistics Algorithm (FSA). Unlike Monte Carlo, FSA is not dependent on a random number generator. Discussions include difficulties and overall requirements, such as need for fast evolutionary computation and realization of goals within machine memory limits. Degradation of results due to influence of pixelization on derivatives, Initial Mass Function (IMF) quantization, IMF steepness, low Areal Densities (<TEX>$\mathcal{A}$</TEX>), and large variation in <TEX>$\mathcal{A}$</TEX> are reduced or eliminated through a variety of schemes that are explained sufficiently for general application. The Levenberg-Marquardt and MMS algorithms for improvement of solution convergence are contained within the DC program. An example of convergence, which typically is very good, is shown in tabular form. A number of theoretical and practical solution issues are discussed, as are prospects for further development.
310
  • Lee, Ki-Won
  • Journal of astronomy and space sciences
  • 31, n.3
  • pp.215-223
  • 2014
  • 원문 바로보기
In this paper, we report the analysis of Korean historical records on the periodic Halley's comet according to the period (i.e., the Three Kingdoms, Goryeo Dynasty, and Joseon Dynasty) using various sources such as the Samguksagi (The History of the Three Kingdoms), Goryeosa (The History of the Goryeo Dynasty), and Joseonwangjosillok (The Annals of the Joseon Dynasty). With regards to the apparition time of the comet for each return, we referred to the works of Kronk. For the Three Kingdoms period, we could not find any record relevant to Halley's comet from the Samguksagi. Furthermore, we examined the suggestion that the phenomenon of 'two Suns' which appeared on April 1, 760 (in a luni-solar calendar), as recorded in the Samgukyusa (The Legends and History of the Three Kingdoms), indicates an instance of the the daytime appearance of Halley's comet. In contrast with the Three Kingdoms period, we found that all returns of Halley's comet are recorded during the Goryeo Dynasty, although others have questioned some accounts. We also found that the appearance of Halley's comet in 1145 is mentioned in a spirit-path stele made in 1178. For the Joseon Dynasty period, we found that all apparitions of the comet are recorded, as with the Goryeo Dynasty, except for the return of 1910, at which time the former dynasty had fallen. In conclusion, we think that this study will be helpful for understanding Korean historical accounts on Halley's comet.