본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2023년까지 1,226 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,226건 (DB Construction : 1,226 Articles)
안내사항
총 게시글 1,226 페이지 18/123
171
The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.
172
  • Kim, Sang Hyuk
  • Journal of astronomy and space sciences
  • 34, n.2
  • pp.171-182
  • 2017
  • 원문 바로보기
In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the <TEX>$20^{th}$</TEX> year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggak-nu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.
173
  • Han, Kiyoung
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.37-44
  • 2017
  • 원문 바로보기
In this paper, analysis results of the photometric data of DO Dra will be presented. DO Dra had been observed with 1 m LOAO telescope and 0.6 m CBNUO telescope from 2005 through 2014. The data shows kind of periodic oscillation behavior in the orbital period and also in the spin period. It has been found that these QPOs are not observed always and that the periods vary from 30 min to 80 min. We also found that the period variation seems to repeat itself with the period of 13.5 days. It is essential to monitor this object in the future as well as to carry out model calculation in order to have better understanding of these QPO phenomena.
174
  • Mihn, Byeong-Hee
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.45-54
  • 2017
  • 원문 바로보기
This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon's astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring's size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings' diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).
175
  • Oh, Hyungjik
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.271-280
  • 2017
  • 원문 바로보기
This study presents the application of satellite laser ranging (SLR) to orbit determination (OD) of high-Earth-orbit (HEO) satellites. Two HEO satellites are considered: the Quasi-Zenith Satellite-1 (QZS-1), a Japanese elliptical-inclinedgeosynchronous-orbit (EIGSO) satellite, and the Compass-G1, a Chinese geostationary-orbit (GEO) satellite. One week of normal point (NP) data were collected for each satellite to perform the OD based on the batch least-square process. Five SLR tracking stations successfully obtained 374 NPs for QZS-1 in eight days, whereas only two ground tracking stations could track Compass-G1, yielding 68 NPs in ten days. Two types of station bias estimation and a station data weighting strategy were utilized for the OD of QZS-1. The post-fit root-mean-square (RMS) residuals of the two week-long arcs were 11.98 cm and 10.77 cm when estimating the biases once in an arc (MBIAS). These residuals were decreased significantly to 2.40 cm and 3.60 cm by estimating the biases every pass (PBIAS). Then, the resultant OD precision was evaluated by the orbit overlap method, yielding three-dimensional errors of 55.013 m with MBIAS and 1.962 m with PBIAS for the overlap period of six days. For the OD of Compass-G1, no station weighting strategy was applied, and only MBIAS was utilized due to the lack of NPs. The post-fit RMS residuals of OD were 8.81 cm and 12.00 cm with 49 NPs and 47 NPs, respectively, and the corresponding threedimensional orbit overlap error for four days was 160.564 m. These results indicate that the amount of SLR tracking data is critical for obtaining precise OD of HEO satellites using SLR because additional parameters, such as station bias, are available for estimation with sufficient tracking data. Furthermore, the stand-alone SLR-based orbit solution is consistently attainable for HEO satellites if a target satellite is continuously trackable for a specific period.
176
  • Chung, Jong-Kyun
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.245-250
  • 2017
  • 원문 바로보기
As a part of collaborative efforts to understand ionospheric irregularities, the Korea ionospheric scintillation sites (KISS) network has been built based on global positioning system (GPS) receivers with sampling rates higher than 1 Hz. We produce the rate of TEC index (ROTI) to represent GPS TEC fluctuations related to ionospheric irregularities. In the KISS network, two ground-based GPS sites at Kiruna (marker: KIRN; geographic: <TEX>$67.9^{\circ}$</TEX> N, <TEX>$21.4^{\circ}$</TEX> E; geomagnetic: <TEX>$65.2^{\circ}$</TEX> N) and Chuuk (marker: CHUK; geographic: <TEX>$7.5^{\circ}$</TEX> N, <TEX>$151.9^{\circ}$</TEX> E; geomagnetic: <TEX>$0.4^{\circ}$</TEX> N) were selected to evaluate the ROTI value for ionospheric irregularities during the occurrence of the 2015 St. Patrick's Day storm. The KIRN ROTI values in the aurora region appear to be generally much higher than the CHUK ROTI values in the EIA region. The CHUK ROTI values increased to ~0.5 TECU/min around UT=13:00 (LT=23:00) on March 16 in the quiet geomagnetic condition. On March 17, 2015, CHUK ROTI values more than 1.0 TECU/min were measured between UT=9:00 and 12:00 (LT=19:00 and 22:00) during the first main phase of the St. Patrick's Day storm. This may be due to ionospheric irregularities by increased pre-reversal enhancement (PRE) after sunset during the geomagnetic storm. Post-midnight, the CHUK ROTI showed two peaks of ~0.5 TECU/min and ~0.3 TECU/min near UT=15:00 (LT=01:00) and UT=18:00 (LT=04:00) at the second main phase. The KIRN site showed significant peaks of ROTI around geomagnetic latitude=<TEX>$63.3^{\circ}$</TEX> N and MLT=15:40 on the same day. These can be explained by enhanced ionospheric irregularities in the auroral oval at the maximum of AE index
177
  • Kim, Jung-Hee
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.257-270
  • 2017
  • 원문 바로보기
Solar activity is known to be linked to changes in the Earth's weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-<TEX>$Ni{\tilde{n}}o$</TEX>-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-<TEX>$Ni{\tilde{n}}o$</TEX> periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-<TEX>$Ni{\tilde{n}}o$</TEX> periods. TCs occurring in the El-<TEX>$Ni{\tilde{n}}o$</TEX> periods are found to last longer compared with the La-<TEX>$Ni{\tilde{n}}o$</TEX> periods. Furthermore, TCs occurring in the El-<TEX>$Ni{\tilde{n}}o$</TEX> periods have a lower central pressure at their maximum strength than those occurring in the La-<TEX>$Ni{\tilde{n}}o$</TEX> periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-<TEX>$Ni{\tilde{n}}o$</TEX> periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-<TEX>$Ni{\tilde{n}}o$</TEX> periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-<TEX>$Ni{\tilde{n}}o$</TEX> periods and in the La-<TEX>$Ni{\tilde{n}}o$</TEX> periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.
178
  • Bae, Jonghee
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.281-288
  • 2017
  • 원문 바로보기
The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon's gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.
179
  • Kim, Vitaly P.
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.251-256
  • 2017
  • 원문 바로보기
The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of <TEX>${\sim}7{\times}10^5$</TEX> more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.
180
  • Hegai, Valery V.
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.1-5
  • 2017
  • 원문 바로보기
The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.