본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,255 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,255건 (DB Construction : 1,255 Articles)
안내사항
총 게시글 1,255 페이지 21/126
201
  • Kim, Sang Hyuk
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.55-65
  • 2017
  • 원문 바로보기
We studied the hour-lines of six extant Yangcheon-cheoks in Korea. To find whether Yangcheon-cheok was used in the whole area of Korea, we calculated the length of shadows of Yangcheon-cheok on the Korean Peninsula, Nanjing and Beijing as well as Hanyang (Seoul), according to 24 solar terms. Comparing the length of shadows with hour-lines of those relics, we could find that Yangcheon-cheok was suitable for use at limited times (from 9:00 to 15:00) during the year. Also, this sundial is more appropriate for use at low latitudes than high ones. Among existing relics, that of Seoul Museum of History made with porcelain was much more suitable to use at Hanyang and its higher latitude. Lee's collection was also suitable to use at Nanjing. It is certain that Yangcheon-cheok was a portable sundial which could be used from nine to fifteen of clock all the year around except for the winter season.
202
  • Kim, Myeong Joon
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.237-244
  • 2017
  • 원문 바로보기
Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker (~7.4 nT) than that of MCs (~10.6 nT). Also, the average duration time and expansion speed of SMFRs are ~2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of ~10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.
203
  • Choi, Eun-Jung
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.289-302
  • 2017
  • 원문 바로보기
The key risk analysis technologies for the re-entry of space objects into Earth's atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on reentry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d'Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth's atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.
204
  • Hong, Junseok
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.7-17
  • 2017
  • 원문 바로보기
In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.
205
  • El-Hameed, Afaf M. Abd
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.31-35
  • 2017
  • 원문 바로보기
Optical observation is one of the most common techniques used for characterizing the physical properties of unknown objects and debris in space. This research presents measurements and properties of the new object 96019 from ground-based optical methods. Optical observations of this small object were performed using a charge-coupled device (CCD) camera and the Santel-500 telescope at the Zvenigorod Observatory. The orbital elements and physical properties of this object, such as area-to-mass ratio, have been determined. The results show that this small object has a low area-to-mass ratio, between 0.009 and <TEX>$0.12m^2/kg$</TEX>. The light curve of object 96019 is given: Over the time intervals, variations in brightness are analyzed and the maximum brightness was found to be 12.4 magnitudes. The observational results show that, this object brightens by about three magnitudes over a time span of three minutes. Based on these observations, the characteristics and physical properties of this object are discussed.
206
  • Choi, Kyu-Cheol
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.315-330
  • 2017
  • 원문 바로보기
Halo coronal mass ejections (CMEs) originating from solar activities give rise to geomagnetic storms when they reach the Earth. Variations in the geomagnetic field during a geomagnetic storm can damage satellites, communication systems, electrical power grids, and power systems, and induce currents. Therefore, automated techniques for detecting and analyzing halo CMEs have been eliciting increasing attention for the monitoring and prediction of the space weather environment. In this study, we developed an algorithm to sense and detect halo CMEs using large angle and spectrometric coronagraph (LASCO) C3 coronagraph images from the solar and heliospheric observatory (SOHO) satellite. In addition, we developed an image processing technique to derive the morphological and dynamical characteristics of halo CMEs, namely, the source location, width, actual CME speed, and arrival time at a 21.5 solar radius. The proposed halo CME automatic analysis model was validated using a model of the past three halo CME events. As a result, a solar event that occurred at 03:38 UT on Mar. 23, 2014 was predicted to arrive at Earth at 23:00 UT on Mar. 25, whereas the actual arrival time was at 04:30 UT on Mar. 26, which is a difference of 5 hr and 30 min. In addition, a solar event that occurred at 12:55 UT on Apr. 18, 2014 was estimated to arrive at Earth at 16:00 UT on Apr. 20, which is 4 hr ahead of the actual arrival time of 20:00 UT on the same day. However, the estimation error was reduced significantly compared to the ENLIL model. As a further study, the model will be applied to many more events for validation and testing, and after such tests are completed, on-line service will be provided at the Korean Space Weather Center to detect halo CMEs and derive the model parameters.
207
  • Yushchenko, Alexander V.
  • Journal of astronomy and space sciences
  • 34, n.3
  • pp.199-205
  • 2017
  • 원문 바로보기
A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature <TEX>$T_{eff}=4,250{\pm}50K$</TEX>, the surface gravity <TEX>${\log}\;g=0.16{\pm}0.1$</TEX>, the microturbulent velocity <TEX>$v_</TEX><TEX>{micro}=2.5km/s$</TEX>, the macroturbulence velocity <TEX>$v_{macro}=9km/s$</TEX> and the iron abundance <TEX>$[Fe/H</TEX><TEX>]</TEX><TEX>=-0.73{\pm}0.11$</TEX>. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.
208
  • Kim, Eun-Jung
  • Journal of astronomy and space sciences
  • 34, n.3
  • pp.225-235
  • 2017
  • 원문 바로보기
The energy balance in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLAB(R) graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STK(R)-MATLAB(R) connectivity was used to send the generated power from STK(R) to MATLAB(R) automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining energy balance in the satellites.
209
We present extra-tidal features of spatial configuration of stars around three metal-poor globular clusters (NGC 6266, NGC 6273, NGC 6681) located in the Galactic bulge. The wide-field photometric data were obtained in BVI bands with the MOSAIC II camera at CTIO 4 m Blanco telescope. The derived color-magnitude diagrams (CMDs) contain stars in a total <TEX>$71^{\prime}{\times}71^{\prime}$</TEX> area including a cluster and its surrounding field outside of the tidal radius of the cluster. Applying statistical filtering technique, we minimized the field star contaminations on the obtained cluster CMDs and extracted the cluster members. On the spatial stellar density maps around the target clusters, we found overdensity features beyond the tidal radii of the clusters. We also found that the radial density profiles of the clusters show departures from the best-fit King model for their outer regions which support the overdensity patterns.
210
  • Jeong, Yeuncheol
  • Journal of astronomy and space sciences
  • 34, n.2
  • pp.75-82
  • 2017
  • 원문 바로보기
High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to <TEX>$T_{eff}$</TEX> = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a <TEX>${\lambda}$</TEX> Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.