본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2023년까지 1,226 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,226건 (DB Construction : 1,226 Articles)
안내사항
총 게시글 1,226 페이지 17/123
161
  • El-Hameed, Afaf M. Abd
  • Journal of astronomy and space sciences
  • 34, n.1
  • pp.31-35
  • 2017
  • 원문 바로보기
Optical observation is one of the most common techniques used for characterizing the physical properties of unknown objects and debris in space. This research presents measurements and properties of the new object 96019 from ground-based optical methods. Optical observations of this small object were performed using a charge-coupled device (CCD) camera and the Santel-500 telescope at the Zvenigorod Observatory. The orbital elements and physical properties of this object, such as area-to-mass ratio, have been determined. The results show that this small object has a low area-to-mass ratio, between 0.009 and <TEX>$0.12m^2/kg$</TEX>. The light curve of object 96019 is given: Over the time intervals, variations in brightness are analyzed and the maximum brightness was found to be 12.4 magnitudes. The observational results show that, this object brightens by about three magnitudes over a time span of three minutes. Based on these observations, the characteristics and physical properties of this object are discussed.
162
  • Kim, Myeong Joon
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.237-244
  • 2017
  • 원문 바로보기
Magnetic flux ropes, often observed during intervals of interplanetary coronal mass ejections, have long been recognized to be critical in space weather. In this work, we focus on magnetic flux rope structure but on a much smaller scale, and not necessarily related to interplanetary coronal mass ejections. Using near-Earth solar wind advanced composition explorer (ACE) observations from 1998 to 2016, we identified a total of 309 small-scale magnetic flux ropes (SMFRs). We compared the characteristics of identified SMFR events with those of normal magnetic cloud (MC) events available from the existing literature. First, most of the MCs and SMFRs have similar values of accompanying solar wind speed and proton densities. However, the average magnetic field intensity of SMFRs is weaker (~7.4 nT) than that of MCs (~10.6 nT). Also, the average duration time and expansion speed of SMFRs are ~2.5 hr and 2.6 km/s, respectively, both of which are smaller by a factor of ~10 than those of MCs. In addition, we examined the geoeffectiveness of SMFR events by checking their correlation with magnetic storms and substorms. Based on the criteria Sym-H < -50 nT (for identification of storm occurrence) and AL < -200 nT (for identification of substorm occurrence), we found that for 88 SMFR events (corresponding to 28.5 % of the total SMFR events), substorms occurred after the impact of SMFRs, implying a possible triggering of substorms by SMFRs. In contrast, we found only two SMFRs that triggered storms. We emphasize that, based on a much larger database than used in previous studies, all these previously known features are now firmly confirmed by the current work. Accordingly, the results emphasize the significance of SMFRs from the viewpoint of possible triggering of substorms.
163
  • Ryu, Kwangsun
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.343-352
  • 2017
  • 원문 바로보기
A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of ~1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.
164
  • Choi, Eun-Jung
  • Journal of astronomy and space sciences
  • 34, n.4
  • pp.303-314
  • 2017
  • 원문 바로보기
With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a <TEX>$1-m^2$</TEX> radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.
165
  • Yeom, Bum-Suk
  • Journal of astronomy and space sciences
  • 34, n.3
  • pp.183-197
  • 2017
  • 원문 바로보기
We present simulations of the optical-band images of high-redshift galaxies utilizing 845 near-ultraviolet (NUV) images of nearby galaxies obtained through the Galaxy Evolution Explorer (GALEX). We compute the concentration (C), asymmetry (A), Gini (G), and <TEX>$M_{20}$</TEX> parameters of the GALEX NUV/Sloan Digital Sky Survey r-band images at z ~ 0 and their artificially redshifted optical images at z = 0.9 and 1.6 in order to quantify the morphology of galaxies at local and high redshifts. The morphological properties of nearby galaxies in the NUV are presented using a combination of morphological parameters, in which early-type galaxies are well separated from late-type galaxies in the <TEX>$G-M_{20}$</TEX>, <TEX>$C-M_{20}$</TEX>, A-C, and <TEX>$A-M_{20}$</TEX> planes. Based on the distribution of galaxies in the A-C and <TEX>$G-M_{20}$</TEX> planes, we examine the morphological K-correction (i.e., cosmological distance effect and bandshift effect). The cosmological distance effect on the quantitative morphological parameters is found to be significant for early-type galaxies, while late-type galaxies are more greatly affected by the bandshift effect. Knowledge of the morphological K-correction will set the foundation for forthcoming studies on understanding the quantitative assessment of galaxy evolution.
166
We present extra-tidal features of spatial configuration of stars around three metal-poor globular clusters (NGC 6266, NGC 6273, NGC 6681) located in the Galactic bulge. The wide-field photometric data were obtained in BVI bands with the MOSAIC II camera at CTIO 4 m Blanco telescope. The derived color-magnitude diagrams (CMDs) contain stars in a total <TEX>$71^{\prime}{\times}71^{\prime}$</TEX> area including a cluster and its surrounding field outside of the tidal radius of the cluster. Applying statistical filtering technique, we minimized the field star contaminations on the obtained cluster CMDs and extracted the cluster members. On the spatial stellar density maps around the target clusters, we found overdensity features beyond the tidal radii of the clusters. We also found that the radial density profiles of the clusters show departures from the best-fit King model for their outer regions which support the overdensity patterns.
167
  • Jeong, Yeuncheol
  • Journal of astronomy and space sciences
  • 34, n.2
  • pp.75-82
  • 2017
  • 원문 바로보기
High-resolution spectroscopic observations of the eclipsing binary system RR Lyn were made using the 1.8 m telescope at the Bohuynsan Optical Astronomical Observatory in Korea. The spectral resolving power was R = 82,000, with a signal to noise ratio of S/N > 150. We found the effective temperatures and surface gravities of the primary and secondary components to be equal to <TEX>$T_{eff}$</TEX> = 7,920 & 7,210 K and log(g) = 3.80 & 4.16, respectively. The abundances of 34 and 17 different chemical elements were found in the atmospheric components. Correlations between the derived abundances with condensation temperatures and the second ionization potentials of these elements are discussed. The primary component is a typical metallic line star with the abundances of light and iron group elements close to solar values, while elements with atomic numbers Z > 30 are overabundant by 0.5-1.5 dex with respect to solar values. The secondary component is a <TEX>${\lambda}$</TEX> Boo type star. In this type of stars, CNO abundances are close to solar values, while the abundance pattern shows a negative correlation with condensation temperatures.
168
  • Moon, Byeongha
  • Journal of astronomy and space sciences
  • 34, n.2
  • pp.99-103
  • 2017
  • 원문 바로보기
The sun is not equally bright over the whole sphere, but rather is darkened toward the limb. This effect is well-known as limb darkening. The limb darkening coefficient is defined by the ratio of the center intensity to limb intensity. In this study, we calculate the limb darkening coefficient using the photospheric intensity estimated from solar images taken by solar and helispheric observatory (SOHO) and solar dynamics observatory (SDO). The photospheric intensity data cover almost two solar cycles from May 1996 to December 2016. The limb darkening coefficient for a size of 0.9 diameter is about 0.69 and this value is consistent with solar limb darkening. The limb darkening coefficient estimated from SOHO shows a temporal increase at solar maximum and a gradual increase since the solar minimum of 2008. The limb darkening coefficient estimated from SDO shows a constant value of about 0.65 and a decreasing trend since 2014. The increase in the coefficient reflects the effect of weakened solar activity. However, the decrease since 2014 is caused by the aging effect.
169
  • Lee, Eunji
  • Journal of astronomy and space sciences
  • 34, n.3
  • pp.213-223
  • 2017
  • 원문 바로보기
The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.
170
  • Lee, Jeong-Ah
  • Journal of astronomy and space sciences
  • 34, n.2
  • pp.127-138
  • 2017
  • 원문 바로보기
The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising <TEX>${\Delta}V$</TEX> and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum <TEX>${\Delta}V$</TEX> since the CubeSat is limited in size and cost. Therefore, the <TEX>${\Delta}V$</TEX> needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of <TEX>$15^{\circ}$</TEX>, among the possible impacting scenarios. For this scenario, the required <TEX>${\Delta}V$</TEX> is calculated as the result of the <TEX>${\Delta}V$</TEX> analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for <TEX>${\Delta}V$</TEX> for the mission.