본문 바로가기 메뉴바로가기
통합검색

통합검색

한국천문학회지

1968년 ~ 2020년까지 1,115 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,115건 (DB Construction : 1,115 Articles)
안내사항
총 게시글 1,115 페이지 5/112
41
  • Kang, Hyesung
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.6
  • pp.185-195
  • 2018
  • 원문 바로보기
Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$ . Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$ . We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.
42
  • Kim, Joonho
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.4
  • pp.89-110
  • 2018
  • 원문 바로보기
Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$ -test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.
43
  • Ann, Hong Bae
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.4
  • pp.73-88
  • 2018
  • 원문 바로보기
We present a sample of 54 disk galaxies which have well developed extraplanar structures. We selected them using visual inspections from the color images of the Sloan Digital Sky Survey. Since the sizes of the extraplanar structures are comparable to the disks, they are considered as prominent stellar halos rather than large bulges. A single $S{\acute{e}}rsic$ profile fitted to the surface brightness along the minor-axis of the disk shows a luminosity excess in the central regions for the majority of sample galaxies. This central excess is considered to be caused by the central bulge component. The mean $S{\acute{e}}rsic$ index of the single component model is $1.1{\pm}0.9$ . A double $S{\acute{e}}rsic$ profile model that employs n = 1 for the inner region, and varying n for the outer region, provides a better fit than the single $S{\acute{e}}rsic$ profile model. For a small fraction of galaxies, a $S{\acute{e}}rsic$ profile fitted with n = 4 for the inner region gives similar results. There is a weak tendency of increasing n with increasing luminosity and central velocity dispersion, but there is no dependence on the local background density.
44
  • Kim, Chunglee
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.5
  • pp.165-170
  • 2018
  • 원문 바로보기
The Galactic Center is one of the most dense stellar environments in the Galaxy and is considered to be a plausible place to harbor many neutron stars. In this brief review, we summarize observational efforts in search of neutron stars within a few degrees about the Galactic Center. Up to 10% of Galactic neutron stars may reside in this central region and it is possible that more than a thousand neutron stars are located within only ~ 2500 ( ${\leq}1pc$ ) about the Galactic Center. Based on observations, we discuss prospects of detecting neutron stars in the Galactic Center via gravitational waves as well as electromagnetic waves.
45
  • Pak, Sungmin
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.4
  • pp.111-117
  • 2018
  • 원문 바로보기
A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.
46
  • Kang, Juhyung
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.6
  • pp.207-214
  • 2018
  • 원문 바로보기
A coelostat is often used for solar observations, because it corrects the image rotation automatically by guiding sunlight into a fixed telescope with two plane mirrors. For the purposes of education and spectroscopic observation, the solar group at Seoul National University (SNU) plans to develop the SNU coelostat (SNUC) and install it in the SNU Astronomical Observatory (SAO). Requirements of the SNUC are
47
  • Suh, Kyung-Won
  • Journal of the Korean astronomical society = 천문학회지
  • 51, n.5
  • pp.155-164
  • 2018
  • 원문 바로보기
We present various infrared two-color diagrams (2CDs) using WISE data for asymptotic giant branch (AGB) stars and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use the sample of 5036 AGB stars, 660 post-AGB stars, and 2748 PNe in our Galaxy. For each object, we cross-identify the IRAS, AKARI, WISE, and 2MASS counterparts. To investigate the spectral evolution from AGB stars to PNe, we compare the theoretical model tracks of AGB stars and post-AGB stars with the observations on the IR 2CDs. We find that the theoretical dust shell model tracks can roughly explain the observations of AGB stars, post-AGB stars, and PNe on the various IR 2CDs. WISE data are useful in studying the evolution of AGB stars and PNe, especially for dim objects. We find that most observed color indices generally increase during the evolution from AGB stars to PNe. We also find that $Fe_{0.9}Mg_{0.1}O$ dust is useful to fit the observed WISE W3-W4 colors for O-rich AGB stars with thin dust shells.
48
  • Lee, Hee-Jae
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.41-49
  • 2017
  • 원문 바로보기
We conduct BVRI and R band photometric observations of asteroid (5247) Krylov from January 2016 to April 2016 for 51 nights using the Korea Microlensing Telescope Network (KMTNet). The color indices of (5247) Krylov at the light curve maxima are determined as $B-V=0.841{\pm}0.035$ , $V-R=0.418{\pm}0.031$ , and $V-I=0.871{\pm}0.031$ where the phase angle is $14.1^{\circ}$ . They are acquired after the standardization of BVRI instrumental measurements using the ensemble normalization technique. Based on the color indices, (5247) Krylov is classified as a S-type asteroid. Double periods, that is, a primary period $P_1=82.188{\pm}0.013h$ and a secondary period $P_2=67.13{\pm}0.20h$ are identified from period searches of its R band light curve. The light curve phases with $P_1$ and this indicate that it is a typical Non-Principal Axis (NPA) asteroid. We discuss the possible causes of its NPA rotation.
49
  • Gould, Andrew
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.1
  • pp.1-5
  • 2017
  • 원문 바로보기
Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error ${\sigma}({\pi}_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for ${\pi}_0$ . Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analytic formulae over a wide range of relevant distances.
50
  • Shin, Jihey
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.61-70
  • 2017
  • 원문 바로보기
We study the angular correlation function of bright ( $K_s{\leq}19.5$ ) Extremely Red Objects (EROs) selected in the Subaru GTO 2 $deg^2$ field. By applying the color selection criteria of $R-K_s$ > 5.0, 5.5, and 6.0, we identify 9055, 4270, and 1777 EROs, respectively. The number density is consistent with similar studies on the optical - NIR color selected red galaxies. The angular correlation functions are derived for EROs with different limiting magnitude and different $R-K_s$ color cut. When we assume that the angular correlation function $w({\theta})$ follows a form of a power-law (i.e., $w({\theta})=A{\theta}^{-{\delta}}$ ), the value of the amplitude A was larger for brighter EROs compared to the fainter EROs. The result suggests that the brighter, thus more massive high-redshift galaxies, are clustered more strongly compared to the less massive galaxies. Assuming that EROs have redshift distribution centered at ~ 1.1 with ${\sigma}_z=0.15$ , the spatial correlation length $r_0$ of the EROs estimated from the observed angular correlation function ranges ${\sim}6-10h^{-1}Mpc$ . A comparison with the clustering of dark matter halos in numerical simulation suggests that the EROs are located in most massive dark matter halos and could be progenitors of $L_{\ast}$ elliptical galaxies.