본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,255 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,255건 (DB Construction : 1,255 Articles)
안내사항
총 게시글 1,255 페이지 9/126
81
  • Jang, Uicheol
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.39-44
  • 2021
  • 원문 바로보기
In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay's pseudo-Newtonian potential approximation for the full general relativity theory. We found that the shape of the accretion disk 'puffs up' or becomes thicker and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole.
82
  • Kim, Pureum
  • Journal of astronomy and space sciences
  • 38, n.2
  • pp.105-117
  • 2021
  • 원문 바로보기
In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.
83
  • Salazar-Manzano, Luis E.
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.1-21
  • 2021
  • 원문 바로보기
The observation of stellar occultations constitutes one of the most important techniques for determining the dimensions and establishing the physical parameters of small Solar System bodies. The most substantial calculations are obtained from multiple observations of the same event, which turns the observation of stellar occultations into highly collaborative work and groups teams of observers through international networks. The above situation also requires the participation of both professional and amateur observers in these collaborative networks. With the aim of promoting the participation of professional and amateur groups in the collaborative observation of stellar occultations, we present the methodology developed by the Astronomical Observatory of the Technological University of Pereira (OAUTP) for the observations of occultations due small Solar System bodies. We expose the three fundamental phases of the process: the plan to make observations, the capture of the events, and the treatment of the data. We apply our methodology using a fixed station and a mobile station to observe stellar occultations due to MBAs (354) Eleonora (61) Danae (15112) Arlenewolfe (3915) Fukushima (61788) 2000 QP181 (425) Cornelia (257) Silesia (386) Siegena and (41) Daphne, and due to TNOs 1998BU48 and (529823) 2010 PP81. The positive detections for the objects (257) Silesia (386) Siegena and (41) Daphne allow us to derive lower limits in the diameter of the MBAs of 63.1 km, 166.2 km and 158.7 km and offsets in the astrometric position (Δαc cos��c, Δ��c) of 622.30 ± 0.83, 15.23 ± 9.88 mas, 586.06 ± 1.68, 43.03 ± 13.88 mas and -413.44 ± 9.42, 234.05 ± 19.12 mas, respectively.
84
  • Yoo, Ji-Hyeon
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.31-38
  • 2021
  • 원문 바로보기
In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.
85
  • Lim, Hyung-Chul
  • Journal of astronomy and space sciences
  • 38, n.3
  • pp.165-173
  • 2021
  • 원문 바로보기
Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.
86
  • Yushchenko, Alexander
  • Journal of astronomy and space sciences
  • 38, n.3
  • pp.175-183
  • 2021
  • 원문 바로보기
The dependencies of the chemical element abundances in stellar atmospheres with respect to solar abundances on the second ionization potentials of the same elements were investigated using the published stellar abundance patterns for 1,149 G and K giants in the Local Region of the Galaxy. The correlations between the relative abundances of chemical elements and their second ionization potentials were calculated for groups of stars with effective temperatures between 3,764 and 7,725 K. Correlations were identified for chemical elements with second ionization potentials of 12.5 eV to 20 eV and for elements with second ionization potentials higher than 20 eV. For the first group of elements, the correlation coefficients were positive for stars with effective temperatures lower than 5,300 K and negative for stars with effective temperatures from 5,300 K to 7,725 K. The results of this study and the comparison with earlier results for hotter stars confirm the variations in these correlations with the effective temperature. A possible explanation for the observed effects is the accretion of hydrogen and helium atoms from the interstellar medium.
87
  • Lim, Yujin
  • Journal of astronomy and space sciences
  • 38, n.4
  • pp.237-250
  • 2021
  • 원문 바로보기
A rover is a planetary surface exploration device designed to move across the ground on a planet or a planetary-like body. Exploration rovers are increasingly becoming a vital part of the search for scientific evidence and discoveries on a planetary satellite of the Sun, such as the Moon or Mars. Reliable behavior and predictable locomotion of a rover is important. Understanding soil behavior and its interaction with rover wheels-the terramechanics-is of great importance in rover exploration performance. Up to now, many researchers have adopted Bekker's semiempirical model to predict rover wheelsoil interaction, which is based on the assumption that soil is deformable when a pressure is applied to it. Despite this basic assumption of the model, the pressure-sinkage relation is not fully understood, and it continues to present challenges for rover designers. This article presents a new pressure-sinkage model based on dimensional analysis (DA) and results of bevameter tests. DA was applied to the test results in order to propose a new pressure-sinkage model by reducing physical quantitative parameters. As part of the work, a new bevameter was designed and built so that it could be successfully used to obtain a proper pressure-sinkage relation of Korean Lunar Soil Simulant (KLS-1). The new pressure-sinkage model was constructed by using three different sizes of flat plate diameters of the bevameter. The newly proposed model was compared successfully with other models for validation purposes.
88
GLONASS, a satellite navigation system developed in Russia since 1976, is defunct and orbits in an unstable attitude. The satellites in these problems are not managed and there is no precise information, which can increase the risk of collisions with other space objects. In this study, detailed attitude dynamic have to be analyzed through photometry data, which requires spin period and spin axis. The light curve data is obtained by observing through the photometer at the Graz station and the power spectrum is calculated to obtain the cycle of the satellite. The geometric relationship between observer and sun is analyzed for GLONASS-50 satellite. The box-wing model is applied to obtain the phase reflection of the satellite and obtain the Irradiation of the satellite through this information. In Light Curve and Irradiation, the spin axis is calculated for each peak points with the distance square minimum technique. The spin axis of the GLONASS-50 satellite is RA = 116°, Dec = 92°.
89
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 38, n.3
  • pp.185-192
  • 2021
  • 원문 바로보기
This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.
90
  • Jee, Geonhwa
  • Journal of astronomy and space sciences
  • 38, n.4
  • pp.203-215
  • 2021
  • 원문 바로보기
The auroral observation has been started at Jang Bogo Station (JBS), Antarctica by using a visible All-sky camera (v-ASC) in 2018 to routinely monitor the aurora in association with the simultaneous observations of the ionosphere, thermosphere and magnetosphere at the station. In this article, the auroral observations are introduced with the analysis procedure to recognize the aurora from the v-ASC image data and to compute the auroral occurrences and the initial results on their spatial and temporal distributions are presented. The auroral occurrences are mostly confined to the northern horizon in the evening sector and extend to the zenith from the northwest to cover almost the entire sky disk over JBS at around 08 MLT (magnetic local time; 03 LT) and then retract to the northeast in the morning sector. At near the magnetic local noon, the occurrences are horizontally distributed in the northern sky disk, which shows the auroral occurrences in the cusp region. The results of the auroral occurrences indicate that JBS is located most of the time in the polar cap near the poleward boundary of the auroral oval in the nightside and approaches closer to the oval in the morning sector. At around 08 MLT (03 LT), JBS is located within the auroral oval and then moves away from it, finally being located in the cusp region at the magnetic local noon, which indicates that the location of JBS turns out to be ideal to investigate the variabilities of the poleward boundary of the auroral oval from long-term observations of the auroral occurrences. The future plan for the ground auroral observations near JBS is presented.