본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,251 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,251건 (DB Construction : 1,251 Articles)
안내사항
총 게시글 1,251 페이지 37/126
361
  • Kim, Young-Rok
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.269-277
  • 2013
  • 원문 바로보기
In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion <TEX>$X_P$</TEX> and <TEX>$Y_P$</TEX> are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.
362
  • Kwak, Younghee
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.315-320
  • 2013
  • 원문 바로보기
Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of <TEX>$13.8^{\circ}$</TEX> (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of <TEX>$3.7^{\circ}$</TEX> (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of <TEX>$10.3^{\circ}$</TEX> (2.9%).
363
  • Jun, Chae-Woo
  • Journal of astronomy and space sciences
  • 30, n.1
  • pp.25-32
  • 2013
  • 원문 바로보기
We statistically investigated the properties of low-latitude Pi2 pulsations using Bohyun (BOH, Mlat = <TEX>$29.8^{\circ}$</TEX>, L = 1.35) ground magnetometer data in 2008. For this 1-year interval, 582 Pi2 events were identified when BOH was in the nightside from 1800 to 0600 local times. We found the following Pi2 characteristics. (1) The occurrence distribution of Pi2s is relatively constant in local times. (2) The Pi2 frequency varies in local times. That is, Pi2 pulsations in postmidnight sector had higher frequency than in premidnight sector. (3) Pi2 power in premidnight sector is stronger than in postmidnight sector. (4) Pi2 frequency has positive correlation with solar wind speed and AE index. (5) Pi2 power has not a clear correlation with solar wind parameters. This indicates that Pi2 power is not controlled by external sources. (6) It is found that the most probable-time between Pi2 onsets is <TEX>${\Delta}t$</TEX> ~ 37.5 min: This is interpreted to be the period between Pi2 pulsations when they occur cyclically. We suggest that <TEX>${\Delta}t$</TEX> ~ 37.5 min is the occurrence rate of reconnection of open field lines in the tail lobe.
364
  • Seo, Kyoung-Ae
  • Journal of astronomy and space sciences
  • 30, n.2
  • pp.87-90
  • 2013
  • 원문 바로보기
We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and <TEX>$N_H{\sim}2.85{\times}10^{22}\;cm^{-2}$</TEX> respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.
365
  • Jeon, Jeheon
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.335-344
  • 2013
  • 원문 바로보기
TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (<TEX>$10{\times}10{\times}30$</TEX> cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultra-high vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.
366
  • Nah, Jakyoung
  • Journal of astronomy and space sciences
  • 30, n.1
  • pp.49-58
  • 2013
  • 원문 바로보기
ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.
367
  • Mao, Jirong
  • Journal of astronomy and space sciences
  • 30, n.3
  • pp.141-143
  • 2013
  • 원문 바로보기
We propose jitter radiation and jitter self-Compton process in this work. We apply our model to the study of GRB prompt emission and GeV-emission. Our results can explain the multi-wavelength spectrum of GRB 100728A very well.
368
  • Park, Han-Earl
  • Journal of astronomy and space sciences
  • 30, n.1
  • pp.1-10
  • 2013
  • 원문 바로보기
An integrated orbit and attitude control algorithm for satellite formation flying was developed, and an integrated orbit and attitude software-in-the-loop (SIL) simulator was also developed to test and verify the integrated control algorithm. The integrated algorithm includes state-dependent Riccati equation (SDRE) control algorithm and PD feedback control algorithm as orbit and attitude controller respectively and configures the two algorithms with an integrating effect. The integrated SIL simulator largely comprises an orbit SIL simulator for orbit determination and control, and attitude SIL simulator for attitude determination and control. The two SIL simulators were designed considering the performance and characteristics of related hardware-in-the-loop (HIL) simulators and were combined into the integrated SIL simulator. To verify the developed integrated SIL simulator with the integrated control algorithm, an orbit simulation and integrated orbit and attitude simulation were performed for a formation reconfiguration scenario using the orbit SIL simulator and the integrated SIL simulator, respectively. Then, the two simulation results were compared and analyzed with each other. As a result, the user satellite in both simulations achieved successful formation reconfiguration, and the results of the integrated simulation were closer to those of actual satellite than the orbit simulation. The integrated orbit and attitude control algorithm verified in this study enables us to perform more realistic orbit control for satellite formation flying. In addition, the integrated orbit and attitude SIL simulator is able to provide the environment of easy test and verification not only for the existing diverse orbit or attitude control algorithms but also for integrated orbit and attitude control algorithms.
369
  • Chung, Moon-Hee
  • Journal of astronomy and space sciences
  • 30, n.4
  • pp.345-353
  • 2013
  • 원문 바로보기
A W-band Orthomode Transducer (OMT) has been developed for Korean VLBI Network (KVN) polarization observation. The OMT design was based on E-plane split-block technique using septum structure. 3-dimensional electromagnetic simulation was fully employed to optimize the performance of the OMT. Measurements of the fabricated OMT show that the return losses for the vertically and horizontally polarized modes are better than -20 dB across 80 ~ 108 GHz and the insertion losses for the both modes are less than 0.47 dB. The cross-polarization level of the OMT is less than -30 dB. The bandwidth of the developed OMT is estimated as around 30%.
370
  • Kang, Hyesung
  • Journal of astronomy and space sciences
  • 30, n.3
  • pp.133-140
  • 2013
  • 원문 바로보기
Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv<TEX>$\acute{e}$</TEX>nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and <TEX>${\gamma}$</TEX>-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.