본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,252 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,252건 (DB Construction : 1,252 Articles)
안내사항
총 게시글 1,252 페이지 25/126
241
  • Suh, Kyung-Won
  • Journal of astronomy and space sciences
  • 33, n.2
  • pp.119-126
  • 2016
  • 원문 바로보기
To reproduce the spectral energy distributions (SEDs) of young stellar objects (YSOs), we perform radiative transfer model calculations for the circumstellar dust disks with various shapes and many dust species. For eight sample objects of T Tauri and Herbig Ae/Be stars, we compare the theoretical model SEDs with the observed SEDs described by the infrared space observatory and Spitzer space telescope spectral data. We use the model, CGPLUS, for a passive irradiated circumstellar dust disk with an inner hole and an inner rim for the eight sample YSOs. We present model parameters for the dust disk, which reproduce the observed SEDs. We find that the model requires a higher mass, luminosity, and temperature for the central star for the Herbig Ae/Be stars than those for the T Tauri stars. Generally, the outer radius, total mass, thickness, and rim height of the theoretical dust disk for the Herbig Ae/Be stars are larger than those for the T Tauri stars.
242
  • Mengist, Chalachew Kindie
  • Journal of astronomy and space sciences
  • 33, n.1
  • pp.29-36
  • 2016
  • 원문 바로보기
The East African ionosphere (3°S-18°N, 32°E-50°E) was mapped using Total Electron Content (TEC) measurements from ground-based GPS receivers situated at Asmara, Mekelle, Bahir Dar, Robe, Arbaminch, and Nairobi. Assuming a thin shell ionosphere at 350 km altitude, we project the Ionospheric Pierce Point (IPP) of a slant TEC measurement with an elevation angle of >10° to its corresponding location on the map. We then infer the estimated values at any point of interest from the vertical TEC values at the projected locations by means of interpolation. The total number of projected IPPs is in the range of 24-66 at any one time. Since the distribution of the projected IPPs is irregularly spaced, we have used an inverse distance weighted interpolation method to obtain a spatial grid resolution of 1°×1° latitude and longitude, respectively. The TEC maps were generated for the year 2008, with a 2 hr temporal resolution. We note that TEC varies diurnally, with a peak in the late afternoon (at 1700 LT), due to the equatorial ionospheric anomaly. We have observed higher TEC values at low latitudes in both hemispheres compared to the magnetic equatorial region, capturing the ionospheric distribution of the equatorial anomaly. We have also confirmed the equatorial seasonal variation in the ionosphere, characterized by minimum TEC values during the solstices and maximum values during the equinoxes. We evaluate the reliability of the map, demonstrating a mean error (difference between the measured and interpolated values) range of 0.04-0.2 TECU (Total Electron Content Unit). As more measured TEC values become available in this region, the TEC map will be more reliable, thereby allowing us to study in detail the equatorial ionosphere of the African sector, where ionospheric measurements are currently very few.
243
  • Lim, Hyung-Chul
  • Journal of astronomy and space sciences
  • 33, n.3
  • pp.211-219
  • 2016
  • 원문 바로보기
Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.
244
  • Lin, Lupin Chun-Che
  • Journal of astronomy and space sciences
  • 33, n.3
  • pp.147-166
  • 2016
  • 원문 바로보기
A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2<sup>nd</sup> Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog) known samples classified as radio-quiet γ-ray pulsars with radio flux density (S<sub>1400</sub>) of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on) are also specified to discuss their common and specific features.
245
  • Kim, Vitaly P.
  • Journal of astronomy and space sciences
  • 33, n.1
  • pp.13-19
  • 2016
  • 원문 바로보기
In recent years, there has been renewed activity in the study of local plasma density enhancements in the low latitude F region ionosphere (low latitude plasma blobs). Satellite, all-sky airglow imager, and radar measurements have identified the characteristics of these blobs, and their coupling to Equatorial Plasma Bubbles (EPBs). New information related to blobs has also been obtained from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. In this paper, we briefly review experimental, theoretical and modeling studies related to low latitude plasma blobs.
246
  • Hegai, Valery V.
  • Journal of astronomy and space sciences
  • 33, n.3
  • pp.207-210
  • 2016
  • 원문 바로보기
Under the assumption of the presence of a medium-scale E × B drift vortex of plasma in the daytime midlatitude F region, and using a simplified ionospheric model, we demonstrate that the E × B drift produces noticeable perturbations in the horizontal distribution of the plasma density in the upper F region. The pattern of ion density perturbations shows two separate medium scale domains of enhanced and reduced ion density with respect to the background. The E × B drift does not produce multiple small-scale ion density irregularities through plasma mixing because of the suppression effect of the field-aligned ambipolar plasma diffusion.
247
  • Rahoma, Walid A.
  • Journal of astronomy and space sciences
  • 33, n.4
  • pp.257-264
  • 2016
  • 원문 바로보기
A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.
248
  • Song, Yuzhe
  • Journal of astronomy and space sciences
  • 33, n.2
  • pp.69-73
  • 2016
  • 원문 바로보기
We use the non-stationary three dimensional two-layer outer gap model to explain gamma-ray emissions from a pulsar magnetosphere. We found out that for some pulsars like the Geminga pulsar, it was hard to explain emissions above a level of around 1 GeV. We then developed the model into a non-stationary model. In this model we assigned a power-law distribution to one or more of the spectral parameters proposed in the previous model and calculated the weighted phase-averaged spectrum. Though this model is suitable for some pulsars, it still cannot explain the high energy emission of the Geminga pulsar. An Inverse-Compton Scattering component between the primary particles and the radio photons in the outer magnetosphere was introduced into the model, and this component produced a sufficient number of GeV photons in the spectrum of the Geminga pulsar.
249
  • Hui, Chung-Yue
  • Journal of astronomy and space sciences
  • 33, n.2
  • pp.101-104
  • 2016
  • 원문 바로보기
More than 100 &#x3B3;&#x2212;ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ) &#x3B3;&#x2212;ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL) pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified &#x3B3;&#x2212;ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the &#x3B3;&#x2212;ray pulsar population, which can place a tight constraint on the emission geometry.
250
  • Dolch, Timothy
  • Journal of astronomy and space sciences
  • 33, n.3
  • pp.167-172
  • 2016
  • 원문 바로보기
We used the 4 m Discovery Channel Telescope (DCT) at Lowell observatory in 2014 to observe the Guitar Nebula, an Hα bow-shock nebula around the high-velocity radio pulsar B2224+65. Since the nebula's discovery in 1992, the structure of the bow-shock has undergone significant dynamical changes. We have observed the limb structure, targeting the 'body' and 'neck' of the guitar. Comparing the DCT observations to 1995 observations with the Palomar 200-inch Hale telescope, we found changes in both spatial structure and surface brightness in the tip, head, and body of the nebula.