본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,252 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,252건 (DB Construction : 1,252 Articles)
안내사항
총 게시글 1,252 페이지 15/126
141
  • Kim, Young-Rok
  • Journal of astronomy and space sciences
  • 36, n.4
  • pp.293-306
  • 2019
  • 원문 바로보기
In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.
142
  • Hong, Junseok
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.121-131
  • 2019
  • 원문 바로보기
The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.
143
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.213-223
  • 2019
  • 원문 바로보기
This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having <TEX>${\pm}10km$</TEX> deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.
144
  • Jo, Eunbyeol
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.61-68
  • 2019
  • 원문 바로보기
We have investigated the variations of sporadic E (Es) layer using the measurements of digisondes at Icheon (<TEX>$37.14^{\circ}N$</TEX>, <TEX>$127.54^{\circ}E$</TEX>, IC) and Jeju (<TEX>$33.4^{\circ}N$</TEX>, <TEX>$126.30^{\circ}E$</TEX>, JJ) in 2011-2018. The Es occurrence rate and its critical frequency (foEs) have peak values in summer at both IC and JJ in consistent with their known seasonal variations at mid-latitudes. The virtual height of the Es layer (h'Es) during equinox months is greater than that in other months. It may be related to the similar variation of meteor peak heights. The h'Es shows the semidiurnal variations with two peaks at early in the morning and late in the afternoon during equinoxes and summer. However, the semi-diurnal variation is not obvious in winter. The semi-diurnal variation is generally thought to be caused by the semi-diurnal tidal variation in the neutral wind shear, whose measurements, however, are rare and not available in the region of interest. To investigate the formation mechanism of Es, we have derived the vertical ion drift velocity using the Horizontal Wind Model (HWM) 14, International Geomagnetic Reference Field, and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar-00 models. Our results show that h'Es preferentially occur at the altitudes where the direction of the vertical ion velocity changes. This result indicates the significant role of ion convergence in the creation of Es.
145
We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near <TEX>${\lambda}$</TEX> 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about <TEX>$5km{\cdot}s^{-1}$</TEX> greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.
146
  • Lee, Young-Sook
  • Journal of astronomy and space sciences
  • 35, n.2
  • pp.93-103
  • 2018
  • 원문 바로보기
Non-specular, vertically upward transit, fast-moving radar echoes are observed in the summer polar upper mesosphere near 90 km using 52 MHz VHF radar at Esrange, Sweden. By resolving maximum echo power movement, the unusual meteor trails propagate vertically upward with taking horizontal displacements at an initial speed of 10 km/s exponentially decreasing with increasing height from 85-89 km, lasting for 3.5 sec. Another upward transit is observed as following a downward transit echo target in about ~1 sec, lasting over 5 sec. The upward motion cannot be explained with the dynamics of penetrating meteors or by atmospheric dynamics. The observation proposes that secondary produced plasma jets occurring from meteor trail are possibly responsible for upward fast moving echoes. The long-lasting (3-5 sec), ascending meteor trails at speeds of a few <TEX>$10^4m/s$</TEX> are distinctive from any previous occurrences of meteors or upper atmospheric electrical discharges in the aspect of long-lasting upward/downward motions. This result possibly suggests a new type of meteor-trail leader discharge occurring in the summer polar upper mesosphere and lower thermosphere.
147
  • Jeong, Yeuncheol
  • Journal of astronomy and space sciences
  • 35, n.1
  • pp.1-6
  • 2018
  • 원문 바로보기
The reanalysis of the previously published abundance pattern of mild barium star HD202109 (<TEX>${\zeta}$</TEX> Cyg) and the chemical compositions of 129 thin disk barium stars facilitated the search for possible correlations of different stellar parameters with second ionization potentials of chemical elements. Results show that three valuable correlations exist in the atmospheres of barium stars. The first is the relationship between relative abundances and second ionization potentials. The second is the age dependence of mean correlation coefficients of relative abundances vs. second ionization potentials, and the third one is the changes in correlation coefficients of relative abundances vs. second ionization potentials as a function of stellar spatial velocities and overabundances of s-process elements. These findings demonstrate the possibility of hydrogen and helium accretion from the interstellar medium on the atmospheres of barium stars.
148
  • Park, Nuri
  • Journal of astronomy and space sciences
  • 35, n.2
  • pp.111-117
  • 2018
  • 원문 바로보기
A previous exo-terrestrial life-detecting experiment, which was conducted on Mars, sought to detect the products of glucose metabolism, the most common biological process on Earth (Viking biological experiment). Today, glucose metabolism is not considered the universal process of life survival. As NASA plans to launch an orbiter mission in the near future (2020s, the Clipper) and ultimately conduct a lander mission on Europa, a detection experiment that can give broader information regarding habitability is highly required. In this study, we designed a life-detecting experiment using a more universal feature of life, the amphipathic molecular membrane, theoretically considering the environment of Europa (waterdominant environment). This designed experiment focuses on finding and profiling hydrophobic cellular membrane-like microstructures. Expected results are given by conceptual data analysis with plausible hypothetical samples.
149
  • Lee, Seongsuk
  • Journal of astronomy and space sciences
  • 35, n.2
  • pp.105-109
  • 2018
  • 원문 바로보기
El <TEX>$Ni{\tilde{n}}o$</TEX> is the largest fluctuation in the climate system, and it can lead to effects influencing humans all over the world. An El <TEX>$Ni{\tilde{n}}o$</TEX> occurs when sea surface temperatures in the central and eastern tropical Pacific Ocean become substantially higher than average. We investigated the change in sea surface temperature in the Pacific Ocean during the El <TEX>$Ni{\tilde{n}}o$</TEX> period of 2015 and 2016 using the advanced very-high-resolution radiometer (AVHRR) of NOAA Satellites. We calculated anomalies of the Pacific equatorial sea surface temperature for the normal period of 1981-2010 to identify the variation of the 2015 El <TEX>$Ni{\tilde{n}}o$</TEX> and warm water area. Generally, the warm water in the western tropical Pacific Ocean shifts eastward along the equator toward the coast of South America during an El <TEX>$Ni{\tilde{n}}o$</TEX> period. However, we identified an additional warm water region in the <TEX>$Ni{\tilde{n}}o$</TEX> 1+2 and Peru coastal area. This indicates that there are other factors that increase the sea surface temperature. In the future, we will study the heat coming from the bottom of the sea to understand the origin of the heat transport of the Pacific Ocean.
150
  • Kim, Ki-Beom
  • Journal of astronomy and space sciences
  • 35, n.3
  • pp.151-161
  • 2018
  • 원문 바로보기
Understanding solar influences on extreme weather is important. Insight into the causes of extreme weather events, including the solar-terrestrial connection, would allow better preparation for these events and help minimize the damage caused by disasters that threaten the human population. In this study, we examined category three, four, and five tropical cyclones that occurred in the western North Pacific Ocean from 1977 to 2016. We compared long-term trends in the positions of tropical cyclone occurrence and development with variations of the observed sunspot area, the solar North-South asymmetry, and the southern oscillation index (SOI). We found that tropical cyclones formed, had their maximum intensity, and terminated more northward in latitude and more westward in longitude over the period analyzed; they also became stronger during that period. It was found that tropical cyclones cannot be correlated or anti-correlated with the solar cycle. No evidence showing that properties (including positions of occurrence/development and other characteristics) of tropical cyclones are modulated by solar activity was found, at least not in terms of a spectral analysis using the wavelet transform method.