본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,249 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,249건 (DB Construction : 1,249 Articles)
안내사항
총 게시글 1,249 페이지 15/125
141
  • Doikov, Dmytry N.
  • Journal of astronomy and space sciences
  • 36, n.1
  • pp.21-33
  • 2019
  • 원문 바로보기
This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted <TEX>${\gamma}-quantum$</TEX> and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of <TEX>${\gamma}-quanta$</TEX> formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the <TEX>${\gamma}-ray$</TEX> spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of <TEX>${\gamma}-quanta$</TEX> emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.
142
  • Park, Nuri
  • Journal of astronomy and space sciences
  • 35, n.2
  • pp.111-117
  • 2018
  • 원문 바로보기
A previous exo-terrestrial life-detecting experiment, which was conducted on Mars, sought to detect the products of glucose metabolism, the most common biological process on Earth (Viking biological experiment). Today, glucose metabolism is not considered the universal process of life survival. As NASA plans to launch an orbiter mission in the near future (2020s, the Clipper) and ultimately conduct a lander mission on Europa, a detection experiment that can give broader information regarding habitability is highly required. In this study, we designed a life-detecting experiment using a more universal feature of life, the amphipathic molecular membrane, theoretically considering the environment of Europa (waterdominant environment). This designed experiment focuses on finding and profiling hydrophobic cellular membrane-like microstructures. Expected results are given by conceptual data analysis with plausible hypothetical samples.
143
  • Jeong, Yeuncheol
  • Journal of astronomy and space sciences
  • 35, n.1
  • pp.1-6
  • 2018
  • 원문 바로보기
The reanalysis of the previously published abundance pattern of mild barium star HD202109 (<TEX>${\zeta}$</TEX> Cyg) and the chemical compositions of 129 thin disk barium stars facilitated the search for possible correlations of different stellar parameters with second ionization potentials of chemical elements. Results show that three valuable correlations exist in the atmospheres of barium stars. The first is the relationship between relative abundances and second ionization potentials. The second is the age dependence of mean correlation coefficients of relative abundances vs. second ionization potentials, and the third one is the changes in correlation coefficients of relative abundances vs. second ionization potentials as a function of stellar spatial velocities and overabundances of s-process elements. These findings demonstrate the possibility of hydrogen and helium accretion from the interstellar medium on the atmospheres of barium stars.
144
  • Kim, Ki-Beom
  • Journal of astronomy and space sciences
  • 35, n.3
  • pp.151-161
  • 2018
  • 원문 바로보기
Understanding solar influences on extreme weather is important. Insight into the causes of extreme weather events, including the solar-terrestrial connection, would allow better preparation for these events and help minimize the damage caused by disasters that threaten the human population. In this study, we examined category three, four, and five tropical cyclones that occurred in the western North Pacific Ocean from 1977 to 2016. We compared long-term trends in the positions of tropical cyclone occurrence and development with variations of the observed sunspot area, the solar North-South asymmetry, and the southern oscillation index (SOI). We found that tropical cyclones formed, had their maximum intensity, and terminated more northward in latitude and more westward in longitude over the period analyzed; they also became stronger during that period. It was found that tropical cyclones cannot be correlated or anti-correlated with the solar cycle. No evidence showing that properties (including positions of occurrence/development and other characteristics) of tropical cyclones are modulated by solar activity was found, at least not in terms of a spectral analysis using the wavelet transform method.
145
  • Lee, Seongsuk
  • Journal of astronomy and space sciences
  • 35, n.2
  • pp.105-109
  • 2018
  • 원문 바로보기
El <TEX>$Ni{\tilde{n}}o$</TEX> is the largest fluctuation in the climate system, and it can lead to effects influencing humans all over the world. An El <TEX>$Ni{\tilde{n}}o$</TEX> occurs when sea surface temperatures in the central and eastern tropical Pacific Ocean become substantially higher than average. We investigated the change in sea surface temperature in the Pacific Ocean during the El <TEX>$Ni{\tilde{n}}o$</TEX> period of 2015 and 2016 using the advanced very-high-resolution radiometer (AVHRR) of NOAA Satellites. We calculated anomalies of the Pacific equatorial sea surface temperature for the normal period of 1981-2010 to identify the variation of the 2015 El <TEX>$Ni{\tilde{n}}o$</TEX> and warm water area. Generally, the warm water in the western tropical Pacific Ocean shifts eastward along the equator toward the coast of South America during an El <TEX>$Ni{\tilde{n}}o$</TEX> period. However, we identified an additional warm water region in the <TEX>$Ni{\tilde{n}}o$</TEX> 1+2 and Peru coastal area. This indicates that there are other factors that increase the sea surface temperature. In the future, we will study the heat coming from the bottom of the sea to understand the origin of the heat transport of the Pacific Ocean.
146
  • Yeo, Insung
  • Journal of astronomy and space sciences
  • 35, n.2
  • pp.67-74
  • 2018
  • 원문 바로보기
Higgs boson enables the Standard Model (SM) to be established. However, we do not know much about dark matter which occupies approximately six times of the SM particles in universe besides having mass. The interactions of dark matter is much weaker than that of the SM. Further, its mass range is very wide, from the order of eV to PeV. Therefore, many experiments have contributed to search for dark matter by indirect, direct and accelerator research. This paper reviews researches on dark matter using accelerator, especially the <TEX>$e^+e^-$</TEX> collider, from the viewpoint of experimental high energy physicists.
147
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 35, n.3
  • pp.119-131
  • 2018
  • 원문 바로보기
In spite of a short history of only 30 years in space development, Korea has achieved outstanding space development capabilities, and became the <TEX>$11^{th}$</TEX> member of the 'Space Club' in 2013 by launching its own satellites with its own launch vehicle from a local space center. With the successful development and operation of more than 10 earth-orbiting satellites since 1999, Korea is now rapidly expanding its own aspirations to outer space exploration. Unlike earth-orbiting missions, planetary missions are more demanding of well-rounded technological capabilities, specifically trajectory design, analysis, and navigation. Because of the importance of relevant technologies, the Korean astronautical society devoted significant efforts to secure these basic technologies from the early 2000s. This paper revisits the numerous efforts conducted to date, specifically regarding flight dynamics and navigation technology, to prepare for future upcoming planetary missions in Korea. However, sustained efforts are still required to realize such challenging planetary missions, and efforts to date will significantly advance the relevant Korean technological capabilities.
148
  • Kang, Dae-Eun
  • Journal of astronomy and space sciences
  • 35, n.4
  • pp.287-293
  • 2018
  • 원문 바로보기
This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.
149
  • Yu, Young Sam
  • Journal of astronomy and space sciences
  • 35, n.3
  • pp.201-210
  • 2018
  • 원문 바로보기
The characterization of detectors installed in space- and ground-based instruments is important to evaluate the system performance. We report the development of a detector performance test system for astronomical applications using the Andor iKon M CCD camera. The performance test system consists of a light source, monochromator, integrating sphere, and power meters. We adopted the Czerny-Tuner monochromator with three ruled gratings and one mirror, which covers a spectral range of 200-9,000 nm with a spectral resolution of ~1 nm in the visible region. Various detector characteristics, such as the quantum efficiency, sensitivity, and noise, can be measured in wide wavelength ranges from the visible to mid-infrared regions. We evaluated the Korea Astronomy and Space Science Institute (KASI) detector performance test system by using the performance verification of the Andor iKon-M CCD camera. The test procedure includes measurements of the conversion gain (<TEX>$2.86e^-/ADU$</TEX>), full well capacity (<TEX>$130K\;e^-$</TEX>), nonlinearity, and pixel defects. We also estimated the read noise, dark current, and quantum efficiency as a function of the temperature. The lowest measured read noise is <TEX>$12e^-$</TEX>. The dark current at 223 K was determined to be <TEX>$7e^-/s/pix$</TEX> and its doubling temperature is <TEX>$5.3^{\circ}C{\pm}0.2^{\circ}C$</TEX> at an activation energy of 0.6 eV. The maximum quantum efficiency at 223 K was estimated to be <TEX>$93%{\pm}2%$</TEX>. We proved that the quantum efficiency is sensitive to the operating temperature. It varies up to 5 % in the visible region, while the variation increases to 30 % in the near-infrared region. Based on the comparison of our results with the test report by the vendor, we conclude that our performance test results are consistent with those from the vendor considering the test environment. We also confirmed that the KASI detector performance test system is reliable and our measurement method and analysis are accurate.
150
  • Sohn, Jongdae
  • Journal of astronomy and space sciences
  • 35, n.3
  • pp.195-200
  • 2018
  • 원문 바로보기
The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle <TEX>$0^{\circ}$</TEX>) and the quasi-trapped electrons (pitch angle <TEX>$90^{\circ}$</TEX>) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.