본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,249 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,249건 (DB Construction : 1,249 Articles)
안내사항
총 게시글 1,249 페이지 14/125
131
  • Jeon, Junhyeok
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.199-211
  • 2019
  • 원문 바로보기
This paper presents at the characteristics of publications in the Journal of Astronomy and Space Sciences from 1984 to 2018. Since its first publication, a total of 1,113 papers (~35 volumes) have been published up to December 2018. While the space astronomy field has made up a large portion of the total number of papers, the number of annually published papers in this field is decreasing. In contrast, the number of papers in the space environment field has been showing an increasing trend since 2013, accounting for more than 30% of the annual publications. The participation rate of foreign researchers has been maintained at greater than 20% since 2012. Despite the decrease in the number of paper per year, there are positive developments including sustained foreign researcher participation at greater than 20% and improvements in the impact factor. We believe that JASS has the potential to enter the distinguished level of international academic journals following a well-developed future road map.
132
  • Doikov, Dmytry
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.115-119
  • 2019
  • 원문 바로보기
This paper is a part of the series on positron annihilation spectroscopy of two-phase diffuse gas-and-dust aggregates, such as interstellar medium and the young remnants of type II supernovae. The results obtained from prior studies were applied here to detect the relationship between the processes of the annihilation of the K-shell electrons and incident positrons, and the effects of these processes on the optical spectra of their respective atoms. Particular attention was paid to the Doppler broadening of their optical lines. The relationship between the atomic mass of the elements and the Doppler broadening, <TEX>${\Delta}{\lambda}_D$</TEX> (<TEX>${\AA}$</TEX>), of their emission lines as produced in these processes was established. This relationship is also illustrated for isotope sets of light elements, namely <TEX>$^3_2He$</TEX>, <TEX>$^6_3Li$</TEX>, <TEX>$^7_3Be$</TEX>, <TEX>$^{10}_5B$</TEX> and <TEX>$^{11}_5B$</TEX>. A direct correlation between the <TEX>${\gamma}-line$</TEX> luminosity ( <TEX>$E_{\gamma}=1.022MeV$</TEX>) and <TEX>${\Delta}{\lambda}_D$</TEX> (<TEX>${\AA}$</TEX>) was proved virtually. Qualitative estimates of the structure of such lines depending on the positron velocity distribution function, f(E), were made. The results are presented in tabular form and can be used to set up the objectives of further studies on active galactic nuclei and young remnants of type II supernovae.
133
  • Lee, Dae-Young
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.45-60
  • 2019
  • 원문 바로보기
The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.
134
  • Shin, Goo-Hwan
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.69-74
  • 2019
  • 원문 바로보기
Spacecraft requires sufficient power in orbit to perform its mission. So as to comply with system requirements, the sufficient power should be made by a solar cell array by photovoltaic power conversion. A life time of space program depends on its mission considering parts reliability and parts grade. Based on the mission life time, power equipment might be designed to meet specifications. In outer space, solar cell array might generate the dc power by photovoltaic conversion effects and GaInP/GaAs/Ge solar cells are used in this study. Space programs that require more than five years should select parts for high reliability applications. Therefore, reliability analysis for high reliability applications should be performed to check its fulfilment of the requirements. This program should also require more five years for its mission and we performed its analysis using parts count method (PCM) for its reliability. Finally, we performed reliability analysis and obtained quantitative figures found out 99.9%. In this study, we presented the reliability analysis of the 300 W GaInP/GaAs/Ge solar cell array.
135
  • Awuor, Adero Ochieng
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.133-147
  • 2019
  • 원문 바로보기
Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) <TEX>$B_Z$</TEX> are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at <TEX>${\sim}58^{\circ}$</TEX> coinciding with the minimum SymH and dayside at <TEX>${\sim}59^{\circ}$</TEX> compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF <TEX>$B_Z$</TEX> in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.
136
  • Shin, Bumjoon
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.169-180
  • 2019
  • 원문 바로보기
In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.
137
  • Kwak, Young-Sil
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.159-168
  • 2019
  • 원문 바로보기
In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.
138
  • Kim, Jung-Hee
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.149-157
  • 2019
  • 원문 바로보기
In this study, we investigate the associations between the solar variability and teleconnection indices, which influence atmospheric circulation and subsequently, the spatial distribution of the global pressure system. A study of the link between the Sun and a large-scale mode of climate variability, which may indirectly affect the Earth's climate and weather, is crucial because the feedbacks of solar variability to an autogenic or internal process should be considered with due care. We have calculated the normalized cross-correlations of the total sunspot area, the total sunspot number, and the solar North-South asymmetry with teleconnection indices. We have found that the Southern Oscillation Index (SOI) index is anti-correlated with both solar activity and the solar North-South asymmetry, with a ~3-year lag. This finding not only agrees with the fact that El <TEX>$Ni{\tilde{n}}o$</TEX> episodes are likely to occur around the solar maximum, but also explains why tropical cyclones occurring in the solar maximum periods and in El <TEX>$Ni{\tilde{n}}o$</TEX> periods appear similar. Conversely, other teleconnection indices, such as the Arctic Oscillation (AO) index, the Antarctic Oscillation (AAO) index, and the Pacific-North American (PNA) index, are weakly or only slightly correlated with solar activity, which emphasizes that response of terrestrial climate and weather to solar variability are local in space. It is also found that correlations between teleconnection indices and solar activity are as good as correlations resulting from the teleconnection indices themselves.
139
  • Kim, Young-Rok
  • Journal of astronomy and space sciences
  • 36, n.4
  • pp.293-306
  • 2019
  • 원문 바로보기
In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.
140
  • Doikov, Dmytry N.
  • Journal of astronomy and space sciences
  • 36, n.1
  • pp.21-33
  • 2019
  • 원문 바로보기
This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted <TEX>${\gamma}-quantum$</TEX> and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of <TEX>${\gamma}-quanta$</TEX> formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the <TEX>${\gamma}-ray$</TEX> spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of <TEX>${\gamma}-quanta$</TEX> emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.