본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2025년까지 1,253 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,253건 (DB Construction : 1,253 Articles)
안내사항
총 게시글 1,253 페이지 14/126
131
  • Hong, Junseok
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.121-131
  • 2019
  • 원문 바로보기
The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.
132
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.213-223
  • 2019
  • 원문 바로보기
This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having <TEX>${\pm}10km$</TEX> deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.
133
  • Jeon, Junhyeok
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.199-211
  • 2019
  • 원문 바로보기
This paper presents at the characteristics of publications in the Journal of Astronomy and Space Sciences from 1984 to 2018. Since its first publication, a total of 1,113 papers (~35 volumes) have been published up to December 2018. While the space astronomy field has made up a large portion of the total number of papers, the number of annually published papers in this field is decreasing. In contrast, the number of papers in the space environment field has been showing an increasing trend since 2013, accounting for more than 30% of the annual publications. The participation rate of foreign researchers has been maintained at greater than 20% since 2012. Despite the decrease in the number of paper per year, there are positive developments including sustained foreign researcher participation at greater than 20% and improvements in the impact factor. We believe that JASS has the potential to enter the distinguished level of international academic journals following a well-developed future road map.
134
  • Doikov, Dmytry
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.115-119
  • 2019
  • 원문 바로보기
This paper is a part of the series on positron annihilation spectroscopy of two-phase diffuse gas-and-dust aggregates, such as interstellar medium and the young remnants of type II supernovae. The results obtained from prior studies were applied here to detect the relationship between the processes of the annihilation of the K-shell electrons and incident positrons, and the effects of these processes on the optical spectra of their respective atoms. Particular attention was paid to the Doppler broadening of their optical lines. The relationship between the atomic mass of the elements and the Doppler broadening, <TEX>${\Delta}{\lambda}_D$</TEX> (<TEX>${\AA}$</TEX>), of their emission lines as produced in these processes was established. This relationship is also illustrated for isotope sets of light elements, namely <TEX>$^3_2He$</TEX>, <TEX>$^6_3Li$</TEX>, <TEX>$^7_3Be$</TEX>, <TEX>$^{10}_5B$</TEX> and <TEX>$^{11}_5B$</TEX>. A direct correlation between the <TEX>${\gamma}-line$</TEX> luminosity ( <TEX>$E_{\gamma}=1.022MeV$</TEX>) and <TEX>${\Delta}{\lambda}_D$</TEX> (<TEX>${\AA}$</TEX>) was proved virtually. Qualitative estimates of the structure of such lines depending on the positron velocity distribution function, f(E), were made. The results are presented in tabular form and can be used to set up the objectives of further studies on active galactic nuclei and young remnants of type II supernovae.
135
  • Lee, Ki-Won
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.87-96
  • 2019
  • 원문 바로보기
We investigate solar and lunar motions in the Seonmyeong (SM) calendar that was compiled by Xu, Ang of the Tang dynasty (A.D. 618-907) in China and used for 71 years from 822 to 892. This calendar was also used in Korea during the Goryeo dynasty (A.D. 918-1392) and in Japan for 823 years from 862 to 1684, the longest time among the three countries. Referring to historical documents of China, Korea, and Japan, we analyze the calendrical methods of calculating the daily apparent movements of the Sun and Moon in the SM calendar, which were considered their unequal motions, and compare the movements with the results of modern calculations for three periods in the Goryeo dynasty: 919, 1155, and 1392 years (i.e., the beginning, middle, and ending of the dynasty, respectively). We find that a quadratic equation was employed to obtain the daily movement of the Sun using physical quantities on the instant of each solar term, which was tabulated in its calendar book such as the Goryeosa (History of the Goryeo Dynasty). For quantitative analysis, we compute the mean absolute difference (MAD) of the daily apparent movement between the SM calendar and modern calculations and obtain 0.33, 0.30, and 0.31 arcmin for the periods of 919, 1155, and 1392 years, respectively. Meanwhile, we find relatively large MAD values in the daily movement of the Moon: 0.217, 0.284, and 0.240 degrees for each corresponding year. An interesting point is that the MAD value in the lunar motion shows the maximum in 1155 years, and is the minimum in the solar motion. In conclusion, we believe that this study will facilitate in the understanding of the SM calendar further, particularly in the calendrical methods of calculating sunrise, sunset, and eclipse times.
136
  • Lee, Youngro
  • Journal of astronomy and space sciences
  • 36, n.4
  • pp.235-248
  • 2019
  • 원문 바로보기
This paper suggests a relative orbit control strategy for the CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment (CANYVAL-X) mission whose main goal is to demonstrate an essential technique, which is an arrangement among two satellites and a specific celestial object, referred to as inertial alignment, for a next-generation virtual space telescope. The inertial alignment system is a relative orbit control system and has requirements for the relative state. Through the proposed orbit control strategy, consisting of separation, proximity keeping, and reconfiguration, the requirements will be satisfied. The separation direction of the two CubeSats with respect to the orbital plane is decided to provide advantageous initial condition to the orbit controller. Proximity keeping is accomplished by differential atmospheric drag control (DADC), which generates acceleration by changing the spacecraft's effective cross section via attitude control rather than consuming propellant. Reconfiguration is performed to meet the requirements after proximity keeping. Numerical simulations show that the requirements can be satisfied by the relative orbit control strategy. Furthermore, through numerical simulations, it is demonstrated that the inertial alignment can be achieved. A beacon signal had been received for several months after the launch; however, we have lost the signal at present.
137
  • Shin, Bumjoon
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.169-180
  • 2019
  • 원문 바로보기
In this study, a batch least square estimator that utilizes optical observation data is developed and utilized to determine geostationary orbits (GEO). Through numerical simulations, the effects of error sources, such as clock errors, measurement noise, and the a priori state error, are analyzed. The actual optical tracking data of a GEO satellite, the Communication, Ocean and Meteorological Satellite (COMS), provided by the optical wide-field patrol network (OWL-Net) is used with the developed batch filter for orbit determination. The accuracy of the determined orbit is evaluated by comparison with two-line elements (TLE) and confirmed as proper for the continuous monitoring of GEO objects. Also, the measurement residuals are converged to several arcseconds, corresponding to the OWL-Net performance. Based on these analyses, it is verified that the independent operation of electro-optic space surveillance systems is possible, and the ephemerides of space objects can be obtained.
138
  • Awuor, Adero Ochieng
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.133-147
  • 2019
  • 원문 바로보기
Challenging Minisatellite Payload (CHAMP) satellite magnetic data are used to investigate the latitudinal variation of the storm-time meso-scale field-aligned currents by defining a new metric called the FAC range. Three major geomagnetic storm events are considered. Alongside SymH, the possible contributions from solar wind dynamic pressure and interplanetary magnetic field (IMF) <TEX>$B_Z$</TEX> are also investigated. The results show that the new metric predicts the latitudinal variation of FACs better than previous studies. As expected, the equatorward expansion and poleward retreat are observed during the storm main phase and recovery phase respectively. The equatorward shift is prominent on the northern duskside, at <TEX>${\sim}58^{\circ}$</TEX> coinciding with the minimum SymH and dayside at <TEX>${\sim}59^{\circ}$</TEX> compared to dawnside and nightside respectively. The latitudinal shift of FAC range is better correlated to IMF <TEX>$B_Z$</TEX> in northern hemisphere dusk-dawn magnetic local time (MLT) sectors than in southern hemisphere. The FAC range latitudinal shifts responds better to dynamic pressure in the duskside northern hemisphere and dawnside southern hemisphere than in southern hemisphere dusk sector and northern hemisphere dawn sector respectively. FAC range exhibits a good correlation with dynamic pressure in the dayside (nightside) southern (northern) hemispheres depicting possible electrodynamic similarity at day-night MLT sectors in the opposite hemispheres.
139
  • Lee, Dae-Young
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.45-60
  • 2019
  • 원문 바로보기
The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.
140
  • Shin, Goo-Hwan
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.69-74
  • 2019
  • 원문 바로보기
Spacecraft requires sufficient power in orbit to perform its mission. So as to comply with system requirements, the sufficient power should be made by a solar cell array by photovoltaic power conversion. A life time of space program depends on its mission considering parts reliability and parts grade. Based on the mission life time, power equipment might be designed to meet specifications. In outer space, solar cell array might generate the dc power by photovoltaic conversion effects and GaInP/GaAs/Ge solar cells are used in this study. Space programs that require more than five years should select parts for high reliability applications. Therefore, reliability analysis for high reliability applications should be performed to check its fulfilment of the requirements. This program should also require more five years for its mission and we performed its analysis using parts count method (PCM) for its reliability. Finally, we performed reliability analysis and obtained quantitative figures found out 99.9%. In this study, we presented the reliability analysis of the 300 W GaInP/GaAs/Ge solar cell array.