본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2024년까지 1,211 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,211건 (DB Construction : 1,211 Articles)
안내사항
총 게시글 1,211 페이지 63/122
621
  • BONG SU-CRAN
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.29-36
  • 2003
  • 원문 바로보기
Quiescent solar radiation, at microwave spectral regime, is dominated by gyroresonant and thermal Bremsstrahlung radiations from hot electrons residing in solar active region corona. These radiations are known to provide excellent diagnostics on the coronal temperature, density, and magnetic field, provided that spatially resolved spectra are available from observations. In this paper we present an imaging spectroscopy implemented for a bipolar active region, AR 7912, using the multifrequency interferometric data from the Owens Valley Solar Array (OVSA), as processed with a new imaging technique, so-called Spatio-Spectral Maximum Entropy Method (SSMEM). From the microwave maps at 26 frequencies in the range of 1.2-12.4 GHz at both right- and left-circular polarizations, we construct spatially resolved brightness spectra in every reconstructed pixel of about 2 arcsec interval. These spectra allowed us to determine 2-D distribution of electron temperature, magnetic field of coronal base, and emission measure at the coronal base above the active region. We briefly compare the present result with existing studies of the coronal active regions.
622
  • JANG M.
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.145-149
  • 2003
  • 원문 바로보기
LIST is the Lyman-<TEX>$\alpha$</TEX> Imaging Solar Telescope, a project funded by the Korean government to fly on the second Korean Science and Technology research Satellite (STSat-2) due to launch in December 2005. The Principal Investigator is Dr. Minhwan Jang of Kyung-Hee University and of the Space Payload Research Center (SPARC), a consortium of Korean universities and institutions formed to develop scientific research projects in space. The purpose of the LIST project is to design, build, and operate an instrument on STSat-2 which will make images of the Sun from Earth orbit at the wavelength of the Hydrogen Lyman-a emission line at 121.6 nm. LIST has a simple design concept comprised of a small telescope to image the full disk of the Sun onto a CCD detector and a set of filters to isolate the 121.6 nm wavelength.
623
  • SCOVILLE NICK
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.3
  • pp.167-175
  • 2003
  • 원문 바로보기
There is accumulating evidence for a strong link between nuclear starbursts and AGN. Molecular gas in the central regions of galaxies plays a critical role in fueling nuclear starburst activity and feeding central AGN. The dense molecular ISM is accreted to the nuclear regions by stellar bars and galactic interactions. Here we describe recent observational results for the OB star forming regions in M51 and the nuclear star burst in Arp 220 - both of which have approximately the same rate of star formation per unit mass of ISM. We suggest that the maximum efficiency for forming young stars is an Eddington-like limit imposed by the radiation pressure of newly formed stars acting on the interstellar dust. This limit corresponds to approximately 500 <TEX>$L_{\bigodot} / M_{\bigodot}$</TEX> for optically thick regions in which the radiation has been degraded to the NIR. Interestingly, we note that some of the same considerations can be important in AGN where the source of fuel is provided by stellar evolution mass-loss or ISM accretion. Most of the stellar mass-loss occurs from evolving red giant stars and whether their mass-loss can be accreted to a central AGN or not depends on the radiative opacity of the mass-loss material. The latter depends on whether the dust survives or is sublimated (due to radiative heating). This, in turn, is determined by the AGN luminosity and the distance of the mass-loss stars from the AGN. Several AGN phenomena such as the broad emission and absorption lines may arise in this stellar mass-loss material. The same radiation pressure limit to the accretion may arise if the AGN fuel is from the ISM since the ISM dust-to-gas ratio is the same as that of stellar mass-loss.
624
  • POLAND A.I.
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.151-154
  • 2003
  • 원문 바로보기
During the past decade the world solar physics community has made significant progress in understanding the Sun and its interaction with the heliosphere and Earth's magnetosphere. NASA in coordination and cooperation with many other countries has had impressive results with the SOHO, YOHKOH, POLAR, GEOTAIL, etc spacecraft. These successes have given us a sound foundation to proceed into the new century. The two current main efforts in the U.S. are the Solar Terrestrial Probes (STP) and Living With A Star (LWS) programs. The STP program is basically science driven with new missions being selected on the basis of basic science discovery. The LWS program is focused on understanding the basic physics of solar variability and its effects on Earth systems. The current plans for these two programs are discussed.
625
  • Taniguchi, Yoshiaki
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.4
  • pp.283-283
  • 2003
  • 원문 바로보기
The first sentence in the second paragraph of INTRODUCTION, 'The first discovery of a galaxy beyond z=5 was reported by Weymann et al. (1998); HDF 4-470.3 at z=5.60.' should be read as 'The first discovery of a galaxy beyond z=5 was reported by Dey et al. (1998); 0140+326 RD1 at z=5.34'. The authors sincerely regret this error.
626
  • FANG C.
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.55-61
  • 2003
  • 원문 바로보기
There are at least three effects of the non-thermal particle bombardment on the solar atmosphere: (1) non-thermal ionization and excitation; (2) proton-hydrogen charge exchange; (3) impact line polarization. Due to the non-thermal ionization and excitation effects of electron bombardments in flares, H<TEX>$\alpha$</TEX> line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Ly<TEX>$\alpha$</TEX> and Ly<TEX>$\beta$</TEX> are also predicted. In the case of proton bombardment, less strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Ly<TEX>$\alpha$</TEX> and especially of Ly<TEX>$\beta$</TEX> lines at the early impulsive phase of flares are significant. Electron beam can also in some cases generates visible and UV continuum emission in white-light flares. However, at the onset phase, a negative 'black' flare may appear in several seconds, due to the increase of the <TEX>$H^-$</TEX> opacity. The impact polarization of atomic lines can provide complementary information on the energetic particles, the energy transport and deposit in the solar chromosphere. New results of spectropolarimetric analysis for the major flare on July 23, 2002 are also given in the paper.
627
  • SHIN JUNHO
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.117-124
  • 2003
  • 원문 바로보기
Pre-launch calibration data have been analyzed for evaluating the point spread function (PSF) of Yohkoh Soft X-ray Telescope (SXT). Especially, it is found crucial that the effect of undersampling should be treated properly. The best fit solution of the SXT PSF, which is modeled by an elliptical Moffat function, has been derived by the comparison with the ground experiment data. In order to examine the off-axis variation of the SXT PSF, we need to define in advance the location of the optical axis on the CCD. According to the previous studies, the off-axis variation of effective area (the vignetting function) may be approximated either by two non-concentric cones or by a cone with some flat distortions. There have been, however, no fully approved representations for the SXT vignetting effect. The effect of the shift of the optical axis from the geometrical center of the telescope is investigated by numerical simulation. It is revealed from our study that the full width at half maximum (FWHM) of the SXT PSF stays nearly constant within an error bound over the central area of the CCD where the solar disk is located.
628
  • LEE JEONGWOO
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.63-73
  • 2003
  • 원문 바로보기
Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.
629
  • LEE DONG-HUN
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.101-107
  • 2003
  • 원문 바로보기
The magnetosphere is often perturbed by impulsive input such as interplanetary shocks and solar wind discontinuities. We study how these initial perturbations are propagating within the magnetosphere over various latitude regions by adopting a three-dimensional numerical dipole model. We examine the wave propagation on a meridional plane in a time-dependent manner and compare the numerical results with multi-satellite and ground observations. The dipole model is used to represent the plasmasphere and magnetosphere with a realistic Alfven speed profile. It is found that the effects of refraction, which result from magnetic field curvature and inhomogeneous Alfven speed, are' found to become important near the plasmapause. Our results show that, when the disturbances are assumed at the subsolar point of the dayside magnetosphere, the travel time becomes smaller to the polar ionosphere compared to the equatorial ionosphere.
630
  • GOODE PHILIP R.
  • Journal of the Korean astronomical society = 천문학회지
  • 36, n.suppl1
  • pp.75-81
  • 2003
  • 원문 바로보기
Changes in the earth's climate depend on changes in the net sunlight reaching us. The net depends on the sun's output and earth's reflectance, or albedo. Here we develop the limits on the changes in the sun's output in historical times based on the physics of the origin of solar cycle changes. Many have suggested that the sun's output could have been <TEX>$0.5\%$</TEX> less during the Maunder minimum, whereas the variation over the solar cycle is only about <TEX>$0.1\%$</TEX>. The frequencies of solar oscillations (f- and p-modes) evolve through the solar cycle, and provide the most exact measure of the cycle-dependent changes in the sun. But precisely what are they probing? The changes in the sun's output, structure and oscillation frequencies are driven by some combination of changes in the magnetic field, thermal structure and velocity field. It has been unclear what is the precise combination of the three. One way or another, this thorny issue rests on an understanding of the response of the solar structure to increased magnetic field, but this is complicated. Thus, we do not understand the origin of the sun's irradiance increase with increasing magnetic activity. Until recently, it seemed that an unphysically large magnetic field change was required to account for the frequency evolution during the cycle. However, the problem seems to have been solved (Dziembowski, Goode & Schou 2001) using f-mode data on size variations of the sun. From this and the work of Dziembowski & Goode (2003), we suggest that in historical times the sun couldn't be much dimmer than it is at activity minimum.