본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2023년까지 1,187 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,187건 (DB Construction : 1,187 Articles)
안내사항
총 게시글 1,187 페이지 38/119
371
  • Chae, Jong-Chul
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.3
  • pp.67-82
  • 2007
  • 원문 바로보기
The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of <TEX>$H{\alpha}$</TEX> images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 <TEX>${\AA}$</TEX> from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width(<TEX>$\Delta\lambda_D=0.27{\AA}$</TEX>), a moderate value of optical thickness at the <TEX>$H{\alpha}$</TEX> absorption peak(<TEX>$\tau_0=0.3$</TEX>), and a spatial width(FWHM) of about 1'. It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of <TEX>$15{\pm}3km\;s^{-1}$</TEX>, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of <TEX>$0{\pm}3km\;s^{-1}$</TEX>. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.
372
  • Lee, Young-Ung
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.133-135
  • 2007
  • 원문 바로보기
A survey project of TRAO with the fifteen beam array receiver system is presented. A multibeam array receiver system has been purchased from FCRAO, and is being installed on TRAO 14m telescope. The target region of the survey is from <TEX>${\iota}=120^{\circ}{\sim}137^{\circ},\;b=-1^{\circ}{\sim}+ 1^{\circ}$</TEX>, and velocity resolution would be 1 km/sec after smoothing from the original resolution of <TEX>$0.64km\;s^{-1}$</TEX> in the transition of J = 1-0 of <TEX>$^{13}CO$</TEX>. The survey region is a part of the <TEX>$^{12}CO$</TEX> Outer Galaxy Survey(OGS), and would be an extension of the Bell Laboratories <TEX>$^{13}CO$</TEX> Galactic Plane Survey. By combining with the existing <TEX>$^{12}CO$</TEX> database of the Outer Galaxy Survey, we will derive physical properties of identified molecular clouds and will conduct and statistical analysis of the Outer Galalxy molecular clouds. Reduction process and analysis methods will be introduced.
373
  • Yoo, Kye-Hwa
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.2
  • pp.39-47
  • 2007
  • 원문 바로보기
A high resolution spectrum of PU Vul obtained at Bohyunsan Astronomy Observatory on April 9, 2004 is presented. At this phase, PU Vul was an emission-line star and its continuum was very weak. Emission lines of He II, H I, [Ne IV], [N II], [O III], [Ar V ] and [Fe VII] dominated the spectrum of PU Vul. Many of them exhibited hat-top profiles with strong and multi-peaked emissions on flat-tops of their profiles. Radial velocities for these lines were measured. Origins of the spectral lines are discussed in terms of the wind and the photoionization models.
374
  • Dib, Sami
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.157-160
  • 2007
  • 원문 바로보기
I present a model to explain the mass segregation and shallow mass functions observed in the central parts of starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent fragmentation of the proto-cluster cloud is significantly altered by the cores coalescence before they collapse to form stars. With appropriate, yet realistic parameters, this model based on the competition between cores coalescence and collapse reproduces the mass spectra of the well studied Arches cluster. Namely, the slopes at the intermediate and high mass ends, as well as the peculiar bump observed at <TEX>$6M_{\bigodot}$</TEX>. This coalescence-collapse process occurs on a short timescale of the order of the free fall time of the proto-cluster cloud (i.e., a few <TEX>$10^4$</TEX> years), suggesting that mass segregation in Arches and similar clusters is primordial. The best fitting model implies the total mass of the Arches cluster is <TEX>$1.45{\times}10^5M_{\bigodot}$</TEX>, which is slightly higher than the often quoted, but completeness affected, observational value of a few <TEX>$10^4M_{\bigodot}$</TEX>. The model implies a star formation efficiency of <TEX>${\sim}30$</TEX> percent which implies that the Arches cluster is likely to a gravitationally bound system.
375
  • Cho, Jung-Yeon
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.113-118
  • 2007
  • 원문 바로보기
Recently far infra-red (FIR) polarization of the <TEX>$850{\mu}m$</TEX> continuum emission from T Tauri disks has been detected. The observed degree of polarization is around 3 %. Since thermal emission from dust grains dominates the spectral energy distribution at the FIR regime, dust grains might be the cause of the polarization. We explore alignment of dust grains by radiative torque in T Tauri disks and provide predictions for polarized emission for disks viewed at different wavelengths and viewing angles. In the presence of magnetic field, these aligned grains produce polarized emission in infrared wavelengths. When we take a Mathis-Rumpl-Nordsieck-type distribution with maximum grain size of <TEX>$500-1000{\mu}m$</TEX>, the degree of polarization is around 2-3 % level at wavelengths larger than <TEX>${\sim}100{\mu}m$</TEX>. Our study indicates that multifrequency infrared polarimetric studies of protostellar disks can provide good insights into the details of their magnetic structure.
376
  • Lee, J.Y.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.99-106
  • 2007
  • 원문 바로보기
Statistical analyses were performed to investigate the relative success and accuracy of daily maximum X-ray flux (MXF) predictions, using both multilinear regression and autoregressive time-series prediction methods. As input data for this work, we used 14 solar activity parameters recorded over the prior 2 year period (1989-1990) during the solar maximum of cycle 22. We applied the multilinear regression method to the following three groups: all 14 variables (G1), the 2 so-called 'cause' variables (sunspot complexity and sunspot group area) showing the highest correlations with MXF (G2), and the 2 'effect' variables (previous day MXF and the number of flares stronger than C4 class) showing the highest correlations with MXF (G3). For the advanced three days forecast, we applied the autoregressive timeseries method to the MXF data (GT). We compared the statistical results of these groups for 1991 data, using several statistical measures obtained from a <TEX>$2{\times}2$</TEX> contingency table for forecasted versus observed events. As a result, we found that the statistical results of G1 and G3 are nearly the same each other and the 'effect' variables (G3) are more reliable predictors than the 'cause' variables. It is also found that while the statistical results of GT are a little worse than those of G1 for relatively weak flares, they are comparable to each other for strong flares. In general, all statistical measures show good predictions from all groups, provided that the flares are weaker than about M5 class; stronger flares rapidly become difficult to predict well, which is probably due to statistical inaccuracies arising from their rarity. Our statistical results of all flares except for the X-class flares were confirmed by Yates' <TEX>$X^2$</TEX> statistical significance tests, at the 99% confidence level. Based on our model testing, we recommend a practical strategy for solar X-ray flare predictions.
377
  • Garcia-Segura, Guillermo
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.147-151
  • 2007
  • 원문 바로보기
We discuss recent advances in hydrodynamical computations of the circumstellar medium, which are useful to understand some features observed in long gamma ray bursts.
378
  • Cho, Hyun-Jin
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.161-164
  • 2007
  • 원문 바로보기
We calculate the evolution of multiple supernova (SN) explosions inside a pre-exiting bubble blown up by winds from massive stars, using one-dimensional hydrodynamic simulations including radiative cooling and thermal conduction effects. First, the development of the wind bubble driven by collective winds from multiple stars during the main sequence is calculated. Then multiple SN explosion is loaded at the center of the bubble and the evolution of the SN remnant is followed for <TEX>$10^6$</TEX> years. We find the size and mass of the SN-driven shell depend on the structure of the pre-existing wind bubble as well as the total SN explosion energy. Most of the explosion energy is lost via radiative cooling, while about 10% remains as kinetic energy and less than 10% as thermal energy of the expanding bubble shell. Thus the photoionization and heating by diffuse radiation emitted by the shock heated gas is the most dominant form of SN feedback into the surrounding interstellar medium.
379
  • Seo, Y.M.
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.119-122
  • 2007
  • 원문 바로보기
From the HCN observations of dense molecular cloud L694-2, Lee et al.(2007) determined internal distributions of density and velocity for the cloud. The density profile collaborates roughly with the Bonnor- Ebert gas sphere, but the velocity field departs significantly from the result of numerical simulations that are started from the BE sphere. Taking L694-2 as an example of collapsing clouds, we have performed a series of collapse simulations and determined initial configurations for the cloud in such a way that the resulting density and velocity profiles both match with the empirically deduced ones. Among many trial configurations the cloud which is initially uniform in density and bound by an expanding envelop depicts most closely the empirically obtained profiles of both density and velocity.
380
  • Silich, Sergiy
  • Journal of the Korean astronomical society = 천문학회지
  • 40, n.4
  • pp.187-188
  • 2007
  • 원문 바로보기
This contribution to the IV Korea-Mexico meeting deals with the hydrodynamics of the matter reinserted within super star clusters (SSCs) by both stellar winds and supernova explosions, results recently printed in The Astrophysical Journal (Silich et al. 2007). The motivation of such a project arose from the persistent presence of the small mass and compact HII regions that sit right on top of many massive and compact SSCs, from which one expects a large mechanical energy power. The data used for our calculations appear only recently (see Smith et al. 2006) for the massive and compact SSC M82-A1. We presented in our paper the calculated flow, derived through analytical and semi-analytical methods, which led to almost identical results. We have found out that the only way of accommodating a compact HII region (4.5 pc in radius, in the case of M82-A1) on top of a 6.3 Myr old and massive (> <TEX>$10^6M_{\bigodot}$</TEX>) SSC with a half light radius of 3 pc, requires of two assumptions: a very low heating efficiency (< 10%) within the cluster, what leads to a bimodal solution (see Tenorio-Tagle et al. 2007) and a high pressure in the surrounding medium.