본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국천문학회지

1968년 ~ 2025년까지 1,227 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • The Korean Astronomical Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,227건 (DB Construction : 1,227 Articles)
안내사항
총 게시글 1,227 페이지 10/123
91
  • Im, Myungshin
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.3
  • pp.89-102
  • 2021
  • 원문 바로보기
Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.
92
  • Chae, Jongchul
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.5
  • pp.139-155
  • 2021
  • 원문 바로보기
We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.
93
  • Kim, Ki-Beom
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.4
  • pp.121-128
  • 2021
  • 원문 바로보기
It has been known that the global asteroseismic parameters as well as the stellar acoustic mode parameters vary with stellar magnetic activity. Some solar-like stars whose variations are thought to be induced by magnetic activity, however, show mode frequencies changing with different magnitude and phase unlike what is expected for the Sun. Therefore, it is of great importance to find out whether expected relations are consistently manifested regardless of the phase of the stellar magnetic cycle, in the sense that observations are apt to cover a part of a complete cycle of stellar magnetic activity unless observations span several decades. Here, we explore whether the observed relations of the global seismic parameters hold good regardless of the phase of the stellar magnetic cycle, even if observations only cover a part of the stellar magnetic cycle. For this purpose, by analyzing photometric Sun-as-a-star data from 1996 to 2019 covering solar cycles 23 and 24, we compare correlations of the global asteroseismic parameters and magnetic proxies for four separate intervals of the solar cycle: solar minima &#x00B1;2 years, solar minima +4 years, solar maxima &#x00B1;2 years, and solar maxima +4 years. We have found that the photometric magnetic activity proxy, S<sub>ph</sub>, is an effective proxy for the solar magnetic activity regardless of the phase of the solar cycle. The amplitude of the mode envelope correlates negatively with the solar magnetic activity regardless of the phase of the solar cycle. However, relations between the central frequency of the envelope and the envelope width are vulnerable to the phase of the stellar magnetic cycle.
94
  • Magara, Tetsuya
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.5
  • pp.157-170
  • 2021
  • 원문 바로보기
We investigate flow and magnetic structure of a solar prominence with a focus on how the magnetic field originally determined by subsurface dynamics gives rise to the structure. We perform a magnetohydrodynamic simulation that reproduces the self-consistent evolution of a flow and the magnetic field passing freely through the solar surface. By analyzing Lagrangian displacements of magnetized plasma elements, we demonstrate the flow structure that is naturally incorporated to the magnetic structure of the prominence formed via dynamic interaction between the flow and the magnetic field. Our results explain a diverging flow on a U-loop, a counterclockwise downdraft along a rotating field line, acceleration and deceleration of a downflow along an S-loop, and partial emergence of a W-loop, which may play key roles in determining structural properties of the prominence.
95
  • Kim, Ki-Beom
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.4
  • pp.129-137
  • 2021
  • 원문 바로보기
It has been established that the acoustic mode parameters of the Sun and Sun-like stars vary over activity cycles. Since the observed variations are not consistent with an activity-related origin, even Sun-like stars showing out-of-phase changes of mode frequencies and amplitudes need to be carefully studied using other observational quantities. In order to test whether the presumed relations between the global seismic parameters are a signature of the stellar activity cycle, we analyze the photometric light curve of HD 49933 for which the first direct detection of an asteroseismic signature for activity-induced variations in a Sun-like star was made, using observations by the CoRoT space telescope. We find that the amplitude of the envelope significantly anti-correlates with both the maximum frequency of the envelope and the width of the envelope unless superflare-like events completely contaminate the light curve. However, even though the photometric proxy for stellar magnetic activity appears to show relations with the global asteroseismic parameters, they are statistically insignificant. Therefore, we conclude that the global asteroseismic parameters can be utilized in cross-checking asteroseismic detections of activity-related variations in Sun-like stars, and that it is probably less secure and effective to construct a photometric magnetic activity proxy to indirectly correlate the global asteroseismic parameters. Finally, we seismically estimate the mass of HD 49933 based on our determination of the large separation of HD 49933 with evolutionary tracks computed by the MESA code and find a value of about 1.2M<sub>&#x2609;</sub> and a sub-solar metallicity of Z = 0.008, which agrees with the current consensus and with asteroseismic and non-asteroseismic data.
96
  • Lee, Chung-Uk
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.4
  • pp.113-119
  • 2021
  • 원문 바로보기
It is difficult for observers to conduct an optical alignment at an observatory without the assistance of an optical engineer if optomechanical parts are to be replaced at night. We present a practical tilt correction method to obtain the optimal optical alignment condition using the symmetricity of optical aberrations of a wide-field on-axis telescope at night. We conducted coarse tilt correction by visually examining the symmetry of two representative star shapes obtained at two guide chips facing each other, such as east-west or north-south pairs. After coarse correction, we observed four sets of small stamp images using four guide cameras located at each cardinal position by changing the focus positions in 10-&#x339B; increments and passing through the optimum focus position in the range of &#x00B1;200 &#x339B;. The standard deviation of each image, as a function of the focus position, was fitted with a second-order polynomial function to derive the optimal focus position at each cardinal edge. We derived the tilt angles from the slopes converted by the distance and the focus position difference between two paired guide chip combinations such as east-west and north-south. We used this method to collimate the on-axis wide-field telescope KMTNet in Chile after replacing two old focus actuators. The total optical alignment time was less than 30 min. Our method is practical and straightforward for maintaining the optical performance of wide-field telescopes such as KMTNet.
97
  • Kim, Minjin
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.2
  • pp.37-47
  • 2021
  • 원문 바로보기
Reverberation mapping (RM) is an efficient method to investigate the physical sizes of the broad line region (BLR) and dusty torus in an active galactic nucleus (AGN). The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission will provide multi-epoch spectroscopic data at optical and near-infrared wavelengths. These data can be used for RM experiments with bright AGNs. We present results of a feasibility test using SPHEREx data in the SPHEREx deep regions for torus RM measurements. We investigate the physical properties of bright AGNs in the SPHEREx deep field. Based on this information, we compute the efficiency of detecting torus time lags in simulated light curves. We demonstrate that, in combination with complementary optical data with a depth of ~ 20 mag in B-band, lags of &#8804; 750 days for tori can be measured for more than ~ 200 bright AGNs. If high signal-to-noise ratio photometric data with a depth of ~ 21-22 mag are available, RM measurements are possible for up to ~ 900 objects. When complemented by well-designed early optical observations, SPHEREx can provide a unique dataset for studies of the physical properties of dusty tori in bright AGNs.
98
  • Lee, Jae-Ok
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.2
  • pp.61-70
  • 2021
  • 원문 바로보기
We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we find that all blobs except one show irregular 'zigzag' trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 km s-1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with different speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and fluid dynamic experiments. We find that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15-3.0) from fluid dynamic experiments of bluff spheres, while they are higher than those (0.15-0.25) from MHD simulations of cylindrical shapes. We thus find that blobs formed in a post-CME CS undergo kinematic oscillations caused by fluid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a bluff spherical shape with the background plasma in the post-CME CS.
99
  • Hwang, Jeong-Sun
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.2
  • pp.71-88
  • 2021
  • 원문 바로보기
We use N-body/hydrodynamic simulations to study the evolution of the spin of a Milky Way-like galaxy through interactions. We perform a controlled experiment of co-planar galaxy-galaxy encounters and study the evolution of disk spins of interacting galaxies. Specifically, we consider cases where the late-type target galaxy encounters an equally massive companion galaxy, which has either a late or an early-type morphology, with a closest approach distance of about 50 kpc, in prograde or retrograde sense. By examining the time change of the circular velocity of the disk material of the target galaxy from each case, we find that the target galaxy tends to lose the spin through prograde collisions but hardly through retrograde collisions, regardless of the companion galaxy type. The decrease of the spin results mainly from the deflection of the orbit of the disk material by tidal disruption. Although there is some disk material which gains the circular velocity through hydrodynamic as well as gravitational interactions or by transferring material from the companion galaxy, it turns out that the amount of the material is generally insufficient to increase the overall galactic spin under the conditions we set. We find that the spin angular momentum of the target galaxy disk decreases by 15-20% after a prograde collision. We conclude that the accumulated effects of galaxy-galaxy interactions will play an important role in determining the total angular momentum of late-type galaxies.
100
  • Do, Thi Hoai
  • Journal of the Korean astronomical society = 천문학회지
  • 54, n.6
  • pp.171-182
  • 2021
  • 원문 바로보기
The lack of short baselines, referred to as the short-spacing problem (SSP), is a well-known limitation of the performance of radio interferometers, causing a reduction of the flux detected from source structure on large angular scales. The very large number of antennas operated in the Atacama Large Millimeter/sub-millimeter Array (ALMA) generates situations for which the impact of the SSP takes a complex form, not simply measurable by a single number, such as the maximal recoverable scale. In particular, extended antenna configurations, complemented by a small group of closeby antennas at the centre of the array, may result in a double-humped baseline distribution with a significant gap between the two groups. In such cases one should adopt as the effective maximal recoverable scale the one associated with the extended array and use only the central array to recover missing flux, as one would do with single dish or ACA (Atacama Compact Array) observations. The impact of the missing baselines can be very important and may easily be underestimated, or even overlooked. The present study uses ALMA archival data of the <sup>29</sup>SiO(8-7) line emission of the AGB star W Hydrae for a demonstration. A critical discussion of the reliability of the observations away from the star is presented together with comments of a broader scope. Properties of the circumstellar envelope of W Hya within ~15 au from the star, many of which are not mentioned in the published literature, are briefly described and compared with R Doradus, an AGB star having properties very similar to W Hya.