본문 바로가기 메뉴바로가기
통합검색

통합검색

한국천문학회지

1968년 ~ 2017년까지 1,054 건한국천문학회지를 격월간 확인하실 수 있습니다.

  • 한국천문학회 (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-4614 (ISSN : 1225-4614)
  • DB구축현황 : 1,054건 (DB Construction : 1,054 Articles)
안내사항
총 게시글 1,054 페이지 1/106
1
  • Seo, Hyunjong
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.1
  • pp.7-20
  • 2017
  • 원문 바로보기
We carry out the study of $850{\mu}m$ sources in a part of the XMM-LSS field. The $850{\mu}m$ imaging data were obtained by the SCUBA-2 on the James Clerk Maxwell Telescope (JCMT) for three days in July 2015 with an integration time of 6.1 hours, covering a circular area with a radius of 15'. We choose the central area up to a radius of 9'.15 for the study, where the noise distribution is relatively uniform. The root mean square (rms) noise at the center is 2.7 mJy. We identify 17 sources with S/N > 3.5. Differential number count is estimated in flux range between 3.5 and 9.0 mJy after applying various corrections derived by imaging simulations, which is consistent with previous studies. For detailed study on the individual sources, we select three sources with more reliable measurements (S/N > 4.5), and construct their spectral energy distributions (SEDs) from optical to far-infrared band. Redshift distribution of the sources ranges from 0.36 to 3.28, and their physical parameters are extracted using MAGPHYS model, which yield infrared luminosity $L_{IR}=10^{11.3}-10^{13.4}L_{\odot}$ , star formation rate $SFR=10^{1.3}-10^{3.2}M_{\odot}yr^{-1}$ and dust temperature $T_D=30-53K$ . We investigate the correlation between $L_{IR}$ and $T_D$ , which appears to be consistent with previous studies.
2
  • Gould, Andrew
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.1
  • pp.1-5
  • 2017
  • 원문 바로보기
Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error ${\sigma}({\pi}_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for ${\pi}_0$ . Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analytic formulae over a wide range of relevant distances.
3
  • Cho, K.S.
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.2
  • pp.29-39
  • 2017
  • 원문 바로보기
We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ( $Dst_{min}{\sim}-75nT$ ) driven by the X1.6 high speed flare-associated CME ( $1267km\;s^{-1}$ ) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ( $Dst_{min}{\sim}-223nT$ ) caused by a CME with moderate speed ( $719km\;s^{-1}$ ) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.
4
  • Chae, Jongchul
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.2
  • pp.21-27
  • 2017
  • 원문 바로보기
The autoregressive method provides a univariate procedure to predict the future sunspot number (SSN) based on past record. The strength of this method lies in the possibility that from past data it yields the SSN in the future as a function of time. On the other hand, its major limitation comes from the intrinsic complexity of solar magnetic activity that may deviate from the linear stationary process assumption that is the basis of the autoregressive model. By analyzing the residual errors produced by the method, we have obtained the following conclusions: (1) the optimal duration of the past time for the forecast is found to be 8.5 years; (2) the standard error increases with prediction horizon and the errors are mostly systematic ones resulting from the incompleteness of the autoregressive model; (3) there is a tendency that the predicted value is underestimated in the activity rising phase, while it is overestimated in the declining phase; (5) the model prediction of a new Solar Cycle is fairly good when it is similar to the previous one, but is bad when the new cycle is much different from the previous one; (6) a reasonably good prediction of a new cycle can be made using the AR model 1.5 years after the start of the cycle. In addition, we predict the next cycle (Solar Cycle 25) will reach the peak in 2024 at the activity level similar to the current cycle.
5
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.41-49
  • 2017
  • 원문 바로보기
We conduct BVRI and R band photometric observations of asteroid (5247) Krylov from January 2016 to April 2016 for 51 nights using the Korea Microlensing Telescope Network (KMTNet). The color indices of (5247) Krylov at the light curve maxima are determined as $B-V=0.841{\pm}0.035$ , $V-R=0.418{\pm}0.031$ , and $V-I=0.871{\pm}0.031$ where the phase angle is $14.1^{\circ}$ . They are acquired after the standardization of BVRI instrumental measurements using the ensemble normalization technique. Based on the color indices, (5247) Krylov is classified as a S-type asteroid. Double periods, that is, a primary period $P_1=82.188{\pm}0.013h$ and a secondary period $P_2=67.13{\pm}0.20h$ are identified from period searches of its R band light curve. The light curve phases with $P_1$ and this indicate that it is a typical Non-Principal Axis (NPA) asteroid. We discuss the possible causes of its NPA rotation.
6
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.61-70
  • 2017
  • 원문 바로보기
We study the angular correlation function of bright ( $K_s{\leq}19.5$ ) Extremely Red Objects (EROs) selected in the Subaru GTO 2 $deg^2$ field. By applying the color selection criteria of $R-K_s$ > 5.0, 5.5, and 6.0, we identify 9055, 4270, and 1777 EROs, respectively. The number density is consistent with similar studies on the optical - NIR color selected red galaxies. The angular correlation functions are derived for EROs with different limiting magnitude and different $R-K_s$ color cut. When we assume that the angular correlation function $w({\theta})$ follows a form of a power-law (i.e., $w({\theta})=A{\theta}^{-{\delta}}$ ), the value of the amplitude A was larger for brighter EROs compared to the fainter EROs. The result suggests that the brighter, thus more massive high-redshift galaxies, are clustered more strongly compared to the less massive galaxies. Assuming that EROs have redshift distribution centered at ~ 1.1 with ${\sigma}_z=0.15$ , the spatial correlation length $r_0$ of the EROs estimated from the observed angular correlation function ranges ${\sim}6-10h^{-1}Mpc$ . A comparison with the clustering of dark matter halos in numerical simulation suggests that the EROs are located in most massive dark matter halos and could be progenitors of $L_{\ast}$ elliptical galaxies.
7
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.79-92
  • 2017
  • 원문 바로보기
We present a BV I optical photometric study of the old open cluster Ruprecht 6 using the data obtained with the SMARTS 1.0 m telescope at the CTIO, Chile. Its color-magnitude diagrams show the clear existence of the main-sequence stars, whose turn-off point is located around $V{\approx}18.45mag$ and $B-V{\approx}0.85mag$ . Three red clump (RC) stars are identified at V = 16.00 mag, I = 14.41 mag and B - V = 1.35 mag. From the mean $K_s-band$ magnitude of RC stars ( $K_s=12.39{\pm}0.21mag$ ) in Ruprecht 6 from 2MASS photometry and the known absolute magnitudes of the RC stars ( $M_{K_S}=-1.595{\pm}0.025mag$ ), we obtain the distance modulus to Ruprecht 6 of $(m-M)_0=13.84{\pm}0.21mag$ ( $d=5.86{\pm}0.60kpc$ ). From the ( $J-K_s$ ) and (B - V ) colors of the RC stars, comparison of the (B - V ) and (V - I) colors of the bright stars in Ruprecht 6 with those of the intrinsic colors of dwarf and giant stars, and the PARSEC isochrone fittings, we derive the reddening values of E(B - V ) = 0.42 mag and E(V - I) = 0.60 mag. Using the PARSEC isochrone fittings onto the color-magnitude diagrams, we estimate the age and metallicity to be: $log(t)=9.50{\pm}0.10(t=3.16{\pm}0.82Gyr)$ and $[Fe/H]=-0.42{\pm}0.04dex$ . We present the Galactocentric radial metallicity gradient analysis for old (age > 1 Gyr) open clusters of the Dias et al. catalog, which likely follow a single relation of $[Fe/H]=(-0.034{\pm}0.007)R_{GC}+(0.190{\pm}0.080)$ (rms = 0.201) for the whole radial range or a dual relation of $[Fe/H]=(-0.077{\pm}0.017)R_{GC}+(0.609{\pm}0.161)$ (rms = 0.152) and constant ([Fe/H] ~ -0.3 dex) value, inside and outside of RGC ~ 12 kpc, respectively. The metallicity and Galactocentric radius ( $13.28{\pm}0.54kpc$ ) of Ruprecht 6 obtained in this study seem to be consistent with both of the relations.
8
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.51-59
  • 2017
  • 원문 바로보기
The presence of blue stragglers pose challenges to standard stellar evolution theory, in the sense that explaining their presence demands a complex interplay between stellar evolution and cluster dynamics. In the meantime, mass transfer in binary systems and stellar collisions are widely studied as a blue straggler formation channel. We explore properties of the Galactic open clusters where blue stragglers are found, in attempting to estimate the relative importance of these two favored processes, by comparing them with those resulting from open clusters in which blue stragglers are absent as of now. Unlike previous studies which require a sophisticated process in understanding the implication of the results, this approach is straightforward and has resulted in a supplementary supporting evidence for the current view on the blue straggler formation mechanism. Our main findings are as follows: (1) Open clusters in which blue stragglers are present have a broader distribution with respect to the Z-axis pointing towards the North Galactic Pole than those in which blue stragglers are absent. The probability that two distributions with respect to the Z-axis are drawn from the same distribution is 0.2%. (2) Average values of $log_10(t)$ of the clusters with blue stragglers and those without blue stragglers are $8.58{\pm}0.232$ and $7.52{\pm}0.285$ , respectively. (3) The clusters with blue stragglers tend to be relatively redder than the others, and are distributed broader in colors. (4) The clusters with blue stragglers are likely brighter than those without blue stragglers. (5) Finally, blue stragglers seem to form in condensed clusters rather than simply dense clusters. Hence, we conclude that mass transfer in binaries seems to be a relatively important physical mechanism of the generation of blue stragglers in open clusters, provided they are sufficiently old.
9
  • Journal of the Korean astronomical society = 천문학회지
  • 50, n.3
  • pp.71-78
  • 2017
  • 원문 바로보기
We present the characteristics and the performance of the new CCD camera system, SNUCAM-II (Seoul National University CAMera system II) that was installed on the Lee Sang Gak Telescope (LSGT) at the Siding Spring Observatory in 2016. SNUCAM-II consists of a deep depletion chip covering a wide wavelength from $0.3{\mu}m$ to $1.1{\mu}m$ with high sensitivity (QE at > 80% over 0.4 to $0.9{\mu}m$ ). It is equipped with the SDSS ugriz filters and 13 medium band width (50 nm) filters, enabling us to study spectral energy distributions (SEDs) of diverse objects from extragalactic sources to solar system objects. On LSGT, SNUCAM-II offers $15.7{\times}15.7$ arcmin field-of-view (FOV) at a pixel scale of 0.92 arcsec and a limiting magnitude of g = 19.91 AB mag and z=18.20 AB mag at $5{\sigma}$ with 180 sec exposure time for point source detection.
10
  • KIM, SEUNG-LEE
  • Journal of the Korean astronomical society = 천문학회지
  • 49, n.5
  • pp.199-208
  • 2016
  • 원문 바로보기
We present photometric results of the δ Sct star V1162 Ori, which is extensively monitored for a total of 49 nights from mid-December 2014 to early-March 2015. The observations are made with three KMTNet (Korea Microlensing Telescope Network) 1.6 m telescopes installed in Chile, South Africa, and Australia. Multiple frequency analysis is applied to the data and resulted in clear detection of seven frequencies without an alias problem: five known frequencies and two new ones with small amplitudes of 1.2-1.7 mmag. The amplitudes of all but one frequency are significantly different from previous results, confirming the existence of long-term amplitude changes. We examine the variations in pulsation timings of V1162 Ori for about 30 years by using the times of maximum light obtained from our data and collected from the literatures. The O − C (Observed minus Calculated) timing diagram shows a combination of a downward parabolic variation with a period decreasing rate of (1/P)dP/dt = −4.22 × 10 −6 year −1 and a cyclic change with a period of about 2780 days. The most probable explanation for this cyclic variation is the light-travel-time effect caused by an unknown binary companion, which has a minimum mass of 0.69 M ⊙ . V1162 Ori is the first δ Sct-type pulsating star of which the observed fast period decrease can be interpreted as an evolutionary effect of a pre-main sequence star, considering its membership of the Orion OB 1c association.