본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2020년까지 1,159 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,159건 (DB Construction : 1,159 Articles)
안내사항
총 게시글 1,159 페이지 4/116
31
In this paper we present analysis of current density when the Cluster spacecraft pass the nightside auroral region at about <TEX>$4-5R_E$</TEX> from the center of Earth. The analysis is made when the inter-spacecraft separation is within 200 km, which allows all four spacecraft to be situated inside the same current sheet. On 22 February 2002, two field-aligned current (FAC) events were observed in both the southern and the northern hemispheres. The FACs were calculated with magnetic field data obtained by the four spacecraft using the Curlometer method. The scales of the FACs along the spacecraft trajectory and the magnitudes were hundreds of kilometers and tens of <TEX>$nA/m^2$</TEX>, respectively, and both events were mapped to the auroral region in the ionosphere. We also examined reliability of the results with some parameters, and found that our results are adequately comparable with other studies. Nevertheless, some limitations that decrease the accuracy of current estimation exist.
32
  • Na, Sung-Ho
  • Journal of astronomy and space sciences
  • 36, n.1
  • pp.11-20
  • 2019
  • 원문 바로보기
Being a torque free motion of the rotating Earth, Chandler wobble is the major component in the Earth's polar motion with amplitude about 0.05-0.2 arcsec and period about 430-435 days. Free core nutation, also called nearly diurnal free wobble, exists due to the elliptical core-mantle boundary in the Earth and takes almost the whole part of un-modelled variation of the Earth's pole in the celestial sphere beside precession and nutation. We hereby present a brief summary of their theories and report their recent features acquired from updated datasets (EOP C04 and ECMWF) by using Fourier transform, modelling, and wavelet analysis. Our new findings include (1) period-instability of free core nutation between 420 and 450 days as well as its large amplitude-variation, (2) re-determined Chandler period and its quality factor, (3) fast decrease in Chandler amplitude after 2010.
33
  • Shin, Goo-Hwan
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.181-186
  • 2019
  • 원문 바로보기
The attitude information of spacecraft can be obtained by the sensors attached to it using a star tracker, three-axis magnetometer, three-axis gyroscope, and a global positioning signal receiver. By using these sensors, the spacecraft can be maneuvered by actuators that generate torques. In particular, electromagnetic-torque bars can be used for attitude control and as a momentum-canceling instrument. The spacecraft momentum can be created by the current through the electrical circuits and coils. Thus, the current around the electromagnetic-torque bars is a critical factor for precisely controlling the spacecraft. In connection with these concerns, a solar-cell array can be considered to prevent generation of a magnetic dipole moment because the solar-cell array can introduce a large amount of current through the electrical wires. The maximum value of a magnetic dipole moment that cannot affect precise control is <TEX>$0.25A{\cdot}m^2$</TEX>, which takes into account the current that flows through the reaction-wheel assembly and the magnetic-torque current. In this study, we designed a 300-W solar cell array and presented an optimal wire-routing method to minimize the magnetic dipole moment for space applications. We verified our proposed method by simulation.
34
  • Hwang, Hyewon
  • Journal of astronomy and space sciences
  • 36, n.4
  • pp.249-264
  • 2019
  • 원문 바로보기
In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.
35
  • Jeong, Yeuncheol
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.105-113
  • 2019
  • 원문 바로보기
Spectroscopic observations of barium star <TEX>${\zeta}$</TEX> Capricornus (HD204075) obtained at the 8.2 m telescope of the European Southern Observatory, with a spectral resolving power R = 80,000 and signal to noise ratio greater than 300, were used to refine the atmospheric parameters. We found new values for effective temperature (<TEX>$T_{eff}=5,300{\pm}50K$</TEX>), surface gravity (<TEX>$log\;g=1.82{\pm}0.15$</TEX>), micro-turbulent velocity (<TEX>$v_{micro}=2.52{\pm}0.10km/s$</TEX>), and iron abundance (<TEX>$log\;N(Fe)=7.32{\pm}0.06$</TEX>). Previously published abundances of chemical elements in the atmosphere of HD204075 were analyzed and no correlations of these abundances with the second ionization potentials of these elements were found. This excludes the possible influence of accretion of hydrogen and helium atoms from the interstellar or circumstellar environment to the atmosphere of this star. The accretion of nuclear processed matter from the evolved binary companion was primary cause of the abundance anomalies. The young age of HD204075 allows an estimation of the time-scale for the creation of the abundance anomalies arising from accretion of interstellar hydrogen and helium as is the case of stars with low magnetic fields; which we estimate should exceed <TEX>$10^8$</TEX> years.
36
  • Chang, Heon-Young
  • Journal of astronomy and space sciences
  • 36, n.4
  • pp.225-234
  • 2019
  • 원문 바로보기
We explore the associations between the total sunspot area, solar north-south asymmetry, and Southern Oscillation Index and the physical characteristics of clouds by calculating normalized cross-correlations, motivated by the idea that the galactic cosmic ray influx modulated by solar activity may cause changes in cloud coverage, and in turn the Earth's climate. Unlike previous studies based on the relative difference, we have employed cloud data as a whole time-series without detrending. We found that the coverage of high-level and low-level cloud is at a maximum when the solar north-south asymmetry is close to the minimum, and one or two years after the solar north-south asymmetry is at a maximum, respectively. The global surface air temperature is at a maximum five years after the solar north-south asymmetry is at a maximum, and the optical depth is at a minimum when the solar north-south asymmetry is at a maximum. We also found that during the descending period of solar activity, the coverage of low-level cloud is at a maximum, and global surface air temperature and cloud optical depth are at a minimum, and that the total column water vapor is at a maximum one or two years after the solar maximum.
37
  • Kim, Chun-Hwey
  • Journal of astronomy and space sciences
  • 36, n.4
  • pp.265-281
  • 2019
  • 원문 바로보기
We present new BVRI light curves of UY UMa with no O'Connell effect and a flat bottom secondary eclipse. Light curve synthesis with the Wilson-Devinney code gives a new solution, which is quite different from the previous study: UY UMa is an A-subtype over-contact binary with a small mass ratio of q = 0.21, a high inclination of 81&#176;.4, a small temperature difference of &#916;T=18&#176;, a large fill-out factor of f = 0.61, and a third light of approximately 10% of the total systemic light. The absolute dimensions were newly determined. Seventeen new times of minimum light have been calculated from our observations. The period study indicates that the orbital period has intricately varied in a secular period increase in which two cyclical terms with periods of 12y.0 and 46y.3 are superposed. The secular period increase was interpreted to be due to a conservative mass transfer of 2.68 &#215; 10-8 M&#8857;/yr from the less massive to the more massive star. The cyclical components are discussed in terms of double-light time contributions from two additional bound stars. The statistical relations of Yang & Qian (2015) among the physical parameters of 45 deep, low mass ratio contact binaries were revisited by using the physical parameters of UY UMa and 25 Kepler contact binaries provided by &#350;enavci et al. (2016).
38
  • Jo, Eunbyeol
  • Journal of astronomy and space sciences
  • 36, n.2
  • pp.61-68
  • 2019
  • 원문 바로보기
We have investigated the variations of sporadic E (Es) layer using the measurements of digisondes at Icheon (<TEX>$37.14^{\circ}N$</TEX>, <TEX>$127.54^{\circ}E$</TEX>, IC) and Jeju (<TEX>$33.4^{\circ}N$</TEX>, <TEX>$126.30^{\circ}E$</TEX>, JJ) in 2011-2018. The Es occurrence rate and its critical frequency (foEs) have peak values in summer at both IC and JJ in consistent with their known seasonal variations at mid-latitudes. The virtual height of the Es layer (h'Es) during equinox months is greater than that in other months. It may be related to the similar variation of meteor peak heights. The h'Es shows the semidiurnal variations with two peaks at early in the morning and late in the afternoon during equinoxes and summer. However, the semi-diurnal variation is not obvious in winter. The semi-diurnal variation is generally thought to be caused by the semi-diurnal tidal variation in the neutral wind shear, whose measurements, however, are rare and not available in the region of interest. To investigate the formation mechanism of Es, we have derived the vertical ion drift velocity using the Horizontal Wind Model (HWM) 14, International Geomagnetic Reference Field, and Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar-00 models. Our results show that h'Es preferentially occur at the altitudes where the direction of the vertical ion velocity changes. This result indicates the significant role of ion convergence in the creation of Es.
39
  • Hong, Junseok
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.121-131
  • 2019
  • 원문 바로보기
The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.
40
  • Song, Young-Joo
  • Journal of astronomy and space sciences
  • 36, n.3
  • pp.213-223
  • 2019
  • 원문 바로보기
This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having <TEX>${\pm}10km$</TEX> deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.