본문 바로가기 메뉴바로가기
통합검색

통합검색

모달창 닫기

한국우주과학회지

1984년 ~ 2021년까지 1,172 건한국우주과학회지를 계간으로 확인하실 수 있습니다.

  • The Korean Space Science Society (The Korean Astronomical Society)
  • 계간 (Quarterly)
  • ISSN : 1225-052x (ISSN : 1225-052x)
  • DB구축현황 : 1,172건 (DB Construction : 1,172 Articles)
안내사항
총 게시글 1,172 페이지 1/118
1
  • Yang, Tae-Yong
  • Journal of astronomy and space sciences
  • 38, n.2
  • pp.135-143
  • 2021
  • 원문 바로보기
We report, for the first time, the afternoon (i.e., from noon to sunset time) observations of the northern mid-latitude E-region field-aligned irregularities (FAIs) made by the very high frequency (VHF) coherent backscatter radar operated continuously since 29 December 2009 at Daejeon (36.18&#x00B0;N, 127.14&#x00B0;E, 26.7&#x00B0;N dip latitude) in South Korea. We present the statistical characteristics of the mid-latitude afternoon E-region FAIs based on the continuous radar observations. Echo signal-to-noise ratio (SNR) of the afternoon E-region FAIs is found to be as high as 35 dB, mostly occurring around 100-135 km altitudes. Most spectral widths of the afternoon echoes are close to zero, indicating that the irregularities during the afternoon time are not related to turbulent plasma motions. The occurrence of afternoon E-regional FAI is observed with significant seasonal variation, with a maximum in summer and a minimum in winter. Furthermore, to investigate the afternoon E-region FAIs-Sporadic E (E<sub>s</sub>) relationship, the FAIs have also been compared with E<sub>s</sub> parameters based on observations made from an ionosonde located at Icheon (37.14&#x00B0;N, 127.54&#x00B0;E, 27.7&#x00B0;N dip latitude), which is 100 km north of Daejeon. The virtual height of E<sub>s</sub> (h'E<sub>s</sub>) is mainly in the height range of 105 km to 110 km, which is 5 km to 10 km greater than the bottom of the FAI. There is no relationship between the FAI SNR and the highest frequencies (f<sub>t</sub>E<sub>s</sub>) (or blanket frequencies (f<sub>b</sub>E<sub>s</sub>)). SNR of FAIs, however, is found to be related well with (f<sub>t</sub>E<sub>s</sub>-f<sub>b</sub>E<sub>s</sub>).
2
  • Woo, Hyung Je
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.65-82
  • 2021
  • 원문 바로보기
For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.
3
  • Yoo, Ji-Hyeon
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.31-38
  • 2021
  • 원문 바로보기
In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.
4
  • Salazar-Manzano, Luis E.
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.1-21
  • 2021
  • 원문 바로보기
The observation of stellar occultations constitutes one of the most important techniques for determining the dimensions and establishing the physical parameters of small Solar System bodies. The most substantial calculations are obtained from multiple observations of the same event, which turns the observation of stellar occultations into highly collaborative work and groups teams of observers through international networks. The above situation also requires the participation of both professional and amateur observers in these collaborative networks. With the aim of promoting the participation of professional and amateur groups in the collaborative observation of stellar occultations, we present the methodology developed by the Astronomical Observatory of the Technological University of Pereira (OAUTP) for the observations of occultations due small Solar System bodies. We expose the three fundamental phases of the process: the plan to make observations, the capture of the events, and the treatment of the data. We apply our methodology using a fixed station and a mobile station to observe stellar occultations due to MBAs (354) Eleonora (61) Danae (15112) Arlenewolfe (3915) Fukushima (61788) 2000 QP181 (425) Cornelia (257) Silesia (386) Siegena and (41) Daphne, and due to TNOs 1998BU48 and (529823) 2010 PP81. The positive detections for the objects (257) Silesia (386) Siegena and (41) Daphne allow us to derive lower limits in the diameter of the MBAs of 63.1 km, 166.2 km and 158.7 km and offsets in the astrometric position (&#916;&#945;c cos&#55349;&#57087;c, &#916;&#55349;&#57087;c) of 622.30 &#177; 0.83, 15.23 &#177; 9.88 mas, 586.06 &#177; 1.68, 43.03 &#177; 13.88 mas and -413.44 &#177; 9.42, 234.05 &#177; 19.12 mas, respectively.
5
  • Kim, Pureum
  • Journal of astronomy and space sciences
  • 38, n.2
  • pp.105-117
  • 2021
  • 원문 바로보기
In this study, a preliminary trajectory design is conducted for a conceptual spacecraft mission to a near-Earth asteroid (NEA) (99942) Apophis, which is expected to pass by Earth merely 32,000 km from the Earth's surface in 2029. This close approach event will provide us with a unique opportunity to study changes induced in asteroids during close approaches to massive bodies, as well as the general properties of NEAs. The conceptual mission is set to arrive at and rendezvous with Apophis in 2028 for an advanced study of the asteroid, and some near-optimal (in terms of fuel consumption) trajectories under this mission architecture are to be investigated using a global optimization algorithm called monotonic basin hopping. It is shown that trajectories with a single swing-by from Venus or Earth, or even simpler ones without gravity assist, are the most feasible. In addition, launch opportunities in 2029 yield another possible strategy of leaving Earth around the 2029 close approach event and simply following the asteroid thereafter, which may be an alternative fuel-efficient option that can be adopted if advanced studies of Apophis are not required.
6
  • Park, Kihong
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.55-63
  • 2021
  • 원문 바로보기
The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.
7
  • Espitia, Daniela
  • Journal of astronomy and space sciences
  • 38, n.2
  • pp.119-134
  • 2021
  • 원문 바로보기
The data set collected during the night of the discovery of a minor body constitutes a too-short arc (TSA), resulting in failure of the differential correction procedure. This makes it necessary to recover the object during subsequent nights to gather more observations that will allow a preliminary orbit to be calculated. In this work, we present a recovery technique based on sampling the admissible region (AdRe) by the constrained Delaunay triangulation. We construct the AdRe in its topocentric and geocentric variants, using logarithmic and exponential metrics, for the following near-Earth-asteroids: (3122) Florence, (3200) Phaethon, 2003 GW, (1864) Daedalus, 2003 BH84 and 1977 QQ5; and the main-belt asteroids: (1738) Oosterhoff, (4690) Strasbourg, (555) Norma, 2006 SO375, 2003 GE55 and (32811) Apisaon. Using our sampling technique, we established the ephemeris region for these objects, using intervals of observation from 25 minutes up to 2 hours, with propagation times from 1 up to 47 days. All these objects were recoverable in a field of vision of 95' &#x00D7; 72', except for (3122) Florence and (3200) Phaethon, since they were observed during their closest approach to the Earth. In the case of 2006 SO375, we performed an additional test with only two observations separated by 2 minutes, achieving a recovery of up to 28 days after its discovery, which demonstrates the potential of our technique.
8
  • Khattab, Elamira Hend
  • Journal of astronomy and space sciences
  • 38, n.2
  • pp.93-103
  • 2021
  • 원문 바로보기
In this work, the problem of resonance caused by some gravitational potentials due to Mercury and a third body, namely the Sun, together with some non-gravitational perturbations, specifically coronal mass ejections and solar wind in addition to radiation pressure, are investigated. Some simplifying assumptions without loss of accuracy are employed. The considered force model is constructed. Then the Delaunay canonical set is introduced. The Hamiltonian of the problem is obtained then it is expressed in terms of the Deluanay canonical set. The Hamiltonian is re-ordered to adopt it to the perturbation technique used to solve the problem. The Lie transform method is surveyed. The Hamiltonian is doubly averaged. The resonance capture is investigated. Finally, some numerical simulations are illustrated and are analyzed. Many resonant inclinations are revealed.
9
  • Chang, Heon-Young
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.23-29
  • 2021
  • 원문 바로보기
Utilizing a new version of the sunspot number and group sunspot number dataset available since 2015, we have statistically studied the relationship between solar activity parameters describing solar cycles and the slope of the linear relationship between the monthly sunspot numbers and the monthly number of active days in percentage (AD). As an effort of evaluating possibilities in use of the number of active days to predict solar activity, it is worthwhile to revisit and extend the analysis performed earlier. In calculating the Pearson's linear correlation coefficient r, the Spearman's rank-order correlation coefficient rs, and the Kendall's &#964; coefficient with the rejection probability, we have calculated the slope for a given solar cycle in three different ways, namely, by counting the spotless day that occurred during the ascending phase and the descending phase of the solar cycle separately, and during the period corresponding to solar minimum &#177; 2 years as well. We have found that the maximum solar sunspot number of a given solar cycle and the duration of the ascending phase are hardly correlated with the slope of a linear function of the monthly sunspot numbers and AD. On the other hand, the duration of a solar cycle is found to be marginally correlated with the slope with the rejection probabilities less than a couple of percent. We have also attempted to compare the relation of the monthly sunspot numbers with AD for the even and odd solar cycles. It is inconclusive, however, that the slopes of the linear relationship between the monthly group numbers and AD are subject to the even and odd solar cycles.
10
  • Jang, Uicheol
  • Journal of astronomy and space sciences
  • 38, n.1
  • pp.39-44
  • 2021
  • 원문 바로보기
In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay's pseudo-Newtonian potential approximation for the full general relativity theory. We found that the shape of the accretion disk 'puffs up' or becomes thicker and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole.